Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Cancer Res Commun ; 4(1): 213-225, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38282550

ABSTRACT

POLE driver mutations in the exonuclease domain (ExoD driver) are prevalent in several cancers, including colorectal cancer and endometrial cancer, leading to dramatically ultra-high tumor mutation burden (TMB). To understand whether POLE mutations that are not classified as drivers (POLE Variant) contribute to mutagenesis, we assessed TMB in 447 POLE-mutated colorectal cancers, endometrial cancers, and ovarian cancers classified as TMB-high ≥10 mutations/Mb (mut/Mb) or TMB-low <10 mut/Mb. TMB was significantly highest in tumors with "POLE ExoD driver plus POLE Variant" (colorectal cancer and endometrial cancer, P < 0.001; ovarian cancer, P < 0.05). TMB increased with additional POLE variants (P < 0.001), but plateaued at 2, suggesting an association between the presence of these variants and TMB. Integrated analysis of AlphaFold2 POLE models and quantitative stability estimates predicted the impact of multiple POLE variants on POLE functionality. The prevalence of immunogenic neoepitopes was notably higher in the "POLE ExoD driver plus POLE Variant" tumors. Overall, this study reveals a novel correlation between POLE variants in POLE ExoD-driven tumors, and ultra-high TMB. Currently, only select pathogenic ExoD mutations with a reliable association with ultra-high TMB inform clinical practice. Thus, these findings are hypothesis-generating, require functional validation, and could potentially inform tumor classification, treatment responses, and clinical outcomes. SIGNIFICANCE: Somatic POLE ExoD driver mutations cause proofreading deficiency that induces high TMB. This study suggests a novel modifier role for POLE variants in POLE ExoD-driven tumors, associated with ultra-high TMB. These data, in addition to future functional studies, may inform tumor classification, therapeutic response, and patient outcomes.


Subject(s)
Colorectal Neoplasms , Endometrial Neoplasms , Ovarian Neoplasms , Female , Humans , Mutagens , Exonucleases/genetics , Poly-ADP-Ribose Binding Proteins/genetics , DNA Polymerase II/genetics , Mutation/genetics , Endometrial Neoplasms/genetics , Mutagenesis , Ovarian Neoplasms/epidemiology , Colorectal Neoplasms/genetics
4.
BMC Genomics ; 24(1): 212, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095444

ABSTRACT

BACKGROUND: Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants (PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their genetic risk remains undefined. METHODS: Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic counseling and tested negative for PGVs in RCC familial syndrome genes. RESULTS: Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline variants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in peripheral blood monocytes (PBMCs) significantly elevated numbers of [Formula: see text]H2AX foci, a marker of double-stranded breaks, in PBMCs from eoRCC patients versus PBMCs from matched cancer-free controls. Knockdown of candidate variant genes in Caki RCC cells increased [Formula: see text]H2AX foci. Immortalized patient-derived B cell lines bearing the candidate variants in DNA polymerase genes (POLD1, POLH, POLE, POLK) had DNA replication defects compared to control cells. Renal tumors carrying these DNA polymerase variants were microsatellite stable but had a high mutational burden. Direct biochemical analysis of the variant Pol δ and Pol η polymerases revealed defective enzymatic activities. CONCLUSIONS: Together, these results suggest that constitutional defects in DNA repair underlie a subset of eoRCC cases. Screening patient lymphocytes to identify these defects may provide insight into mechanisms of carcinogenesis in a subset of genetically undefined eoRCCs. Evaluation of DNA repair defects may also provide insight into the cancer initiation mechanisms for subsets of eoRCCs and lay the foundation for targeting DNA repair vulnerabilities in eoRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Genetic Predisposition to Disease , DNA Replication , Germ-Line Mutation , Germ Cells
6.
Molecules ; 28(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36903424

ABSTRACT

Plant cell cultures of various yew species are a profitable source of taxoids (taxane diterpenoids) with antitumor activity. So far, despite intensive studies, the principles of the formation of different groups of taxoids in cultured in vitro plant cells have not been fully revealed. In this study, the qualitative composition of taxoids of different structural groups was assessed in callus and suspension cell cultures of three yew species (Taxus baccata, T. canadensis, and T. wallichiana) and two T. × media hybrids. For the first time, 14-hydroxylated taxoids were isolated from the biomass of the suspension culture of T. baccata cells, and their structures were identified by high-resolution mass spectrometry and NMR spectroscopy as 7ß-hydroxy-taxuyunnanin C, sinenxane C, taxuyunnanine C, 2α,5α,9α,10ß,14ß-pentaacetoxy-4(20), 11-taxadiene, and yunnanxane. UPLC-ESI-MS screening of taxoids was performed in more than 20 callus and suspension cell lines originating from different explants and grown in over 20 formulations of nutrient media. Regardless of the species, cell line origin, and conditions, most of the investigated cell cultures retained the ability to form taxane diterpenoids. Nonpolar 14-hydroxylated taxoids (in the form of polyesters) were predominant under in vitro culture conditions in all cell lines. These results, together with the literature data, suggest that dedifferentiated cell cultures of various yew species retain the ability to synthesize taxoids, but predominantly of the 14-OH taxoid group compared to the 13-OH taxoids found in plants.


Subject(s)
Diterpenes , Taxus , Taxus/chemistry , Plant Cells/metabolism , Taxoids/metabolism , Diterpenes/chemistry , Cell Culture Techniques
7.
Nat Struct Mol Biol ; 30(1): 107-114, 2023 01.
Article in English | MEDLINE | ID: mdl-36536104

ABSTRACT

The double-strand break (DSB) repair pathway called microhomology-mediated end-joining (MMEJ) is thought to be dependent on DNA polymerase theta (Polθ) and occur independently of nonhomologous end-joining (NHEJ) factors. An unresolved question is whether MMEJ is facilitated by a single Polθ-mediated end-joining pathway or consists of additional undiscovered pathways. We find that human X-family Polλ, which functions in NHEJ, additionally exhibits robust MMEJ activity like Polθ. Polλ promotes MMEJ in mammalian cells independently of essential NHEJ factors LIG4/XRCC4 and Polθ, which reveals a distinct Polλ-dependent MMEJ mechanism. X-ray crystallography employing in situ photo-induced DSB formation captured Polλ in the act of stabilizing a microhomology-mediated DNA synapse with incoming nucleotide at 2.0 Å resolution and reveals how Polλ performs replication across a DNA synapse joined by minimal base-pairing. Last, we find that Polλ is semisynthetic lethal with BRCA1 and BRCA2. Together, these studies indicate Polλ MMEJ as a distinct DSB repair mechanism.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Animals , Humans , DNA End-Joining Repair , DNA , Mammals
8.
Cancer Treat Rev ; 104: 102337, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35051883

ABSTRACT

DNA repair vulnerabilities are present in a significant proportion of cancers. Specifically, germline alterations in DNA repair not only increase cancer risk but are associated with treatment response and clinical outcomes. The therapeutic landscape of cancer has rapidly evolved with the FDA approval of therapies that specifically target DNA repair vulnerabilities. The clinical success of synthetic lethality between BRCA deficiency and poly(ADP-ribose) polymerase (PARP) inhibition has been truly revolutionary. Defective mismatch repair has been validated as a predictor of response to immune checkpoint blockade associated with durable responses and long-term benefit in many cancer patients. Advances in next generation sequencing technologies and their decreasing cost have supported increased genetic profiling of tumors coupled with germline testing of cancer risk genes in patients. The clinical adoption of panel testing for germline assessment in high-risk individuals has generated a plethora of genetic data, particularly on DNA repair genes. Here, we highlight the therapeutic relevance of germline aberrations in DNA repair to identify patients eligible for precision treatments such as PARP inhibitors (PARPis), immune checkpoint blockade, chemotherapy, radiation therapy and combined treatment. We also discuss emerging mechanisms that regulate DNA repair.


Subject(s)
Neoplasms , DNA Repair/genetics , Germ Cells , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Precision Medicine
10.
Front Genet ; 12: 628758, 2021.
Article in English | MEDLINE | ID: mdl-33868369

ABSTRACT

RRM2B plays a crucial role in DNA replication, repair and oxidative stress. While germline RRM2B mutations have been implicated in mitochondrial disorders, its relevance to cancer has not been established. Here, using TCGA studies, we investigated RRM2B alterations in cancer. We found that RRM2B is highly amplified in multiple tumor types, particularly in MYC-amplified tumors, and is associated with increased RRM2B mRNA expression. We also observed that the chromosomal region 8q22.3-8q24, is amplified in multiple tumors, and includes RRM2B, MYC along with several other cancer-associated genes. An analysis of genes within this 8q-amplicon showed that cancers that have both RRM2B-amplified along with MYC have a distinct pattern of amplification compared to cancers that are unaltered or those that have amplifications in RRM2B or MYC only. Investigation of curated biological interactions revealed that gene products of the amplified 8q22.3-8q24 region have important roles in DNA repair, DNA damage response, oxygen sensing, and apoptosis pathways and interact functionally. Notably, RRM2B-amplified cancers are characterized by mutation signatures of defective DNA repair and oxidative stress, and at least RRM2B-amplified breast cancers are associated with poor clinical outcome. These data suggest alterations in RR2MB and possibly the interacting 8q-proteins could have a profound effect on regulatory pathways such as DNA repair and cellular survival, highlighting therapeutic opportunities in these cancers.

11.
Sci Rep ; 10(1): 13518, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32782288

ABSTRACT

Pathogenic variants (PVs) in multiple genes are known to increase the risk of early-onset renal cancer (eoRC). However, many eoRC patients lack PVs in RC-specific genes; thus, their genetic risk remains undefined. Here, we determine if PVs in DNA damage response and repair (DDRR) genes are enriched in eoRC patients undergoing cancer risk assessment. Retrospective review of de-identified results from 844 eoRC patients, undergoing testing with a multi-gene panel, for a variety of indications, by Ambry Genetics. PVs in cancer-risk genes were identified in 12.8% of patients-with 3.7% in RC-specific, and 8.55% in DDRR genes. DDRR gene PVs were most commonly identified in CHEK2, BRCA1, BRCA2, and ATM. Among the 2.1% of patients with a BRCA1 or BRCA2 PV, < 50% reported a personal history of hereditary breast or ovarian-associated cancer. No association between age of RC diagnosis and prevalence of PVs in RC-specific or DDRR genes was observed. Additionally, 57.9% patients reported at least one additional cancer; breast cancer being the most common (40.1% of females, 2.5% of males). Multi-gene testing including DDRR genes may provide a more comprehensive risk assessment in eoRC patients. Further validation is needed to characterize the association with eoRC.


Subject(s)
DNA Damage/genetics , DNA Repair/genetics , Genetic Variation , Kidney Neoplasms/genetics , Adult , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Cohort Studies , Female , Genetic Predisposition to Disease/genetics , Genetic Testing , Humans , Kidney Neoplasms/diagnosis , Male , Middle Aged , Prevalence , Risk Assessment , Young Adult
12.
Mol Genet Genomic Med ; 7(3): e556, 2019 03.
Article in English | MEDLINE | ID: mdl-30680959

ABSTRACT

BACKGROUND: Identification of genetic factors causing predisposition to renal cell carcinoma has helped improve screening, early detection, and patient survival. METHODS: We report the characterization of a proband with renal and thyroid cancers and a family history of renal and other cancers by whole-exome sequencing (WES), coupled with WES analysis of germline DNA from additional affected and unaffected family members. RESULTS: This work identified multiple predicted protein-damaging variants relevant to the pattern of inherited cancer risk. Among these, the proband and an affected brother each had a heterozygous Ala45Thr variant in SDHA, a component of the succinate dehydrogenase (SDH) complex. SDH defects are associated with mitochondrial disorders and risk for various cancers; immunochemical analysis indicated loss of SDHB protein expression in the patient's tumor, compatible with SDH deficiency. Integrated analysis of public databases and structural predictions indicated that the two affected individuals also had additional variants in genes including TGFB2, TRAP1, PARP1, and EGF, each potentially relevant to cancer risk alone or in conjunction with the SDHA variant. In addition, allelic imbalances of PARP1 and TGFB2 were detected in the tumor of the proband. CONCLUSION: Together, these data suggest the possibility of risk associated with interaction of two or more variants.


Subject(s)
Carcinoma, Renal Cell/genetics , Germ-Line Mutation , Kidney Neoplasms/genetics , Adult , Aged , Electron Transport Complex II/genetics , Epistasis, Genetic , Female , HSP90 Heat-Shock Proteins/genetics , Humans , Male , Middle Aged , Pedigree , Poly (ADP-Ribose) Polymerase-1/genetics , Transforming Growth Factor beta2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...