Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 15(47): 54996-55008, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37962902

ABSTRACT

Memristive devices, known for their nonvolatile resistive switching, are promising components for next-generation neuromorphic computing systems, which mimic the brain's neural architecture. Specifically, these devices are well-suited for functioning as artificial synapses due to their analogue tunability and low energy consumption. However, the improvement of their performance and reliability remains a pressing challenge. In this study, we report the development and comprehensive characterization of memristive devices based on a parylene-MoOx (PPX-Mo) nanocomposite layer, which exhibit improved characteristics over their parylene-based counterparts: lower switching voltage and energy, smaller dispersion, and better resistive plasticity. A robust statistical analysis identified the optimal synthesis parameters for these devices, providing valuable insights for future device optimization. The most probable resistive switching mechanism of the devices is proposed. By successfully integrating these memristors into a neuromorphic computing model and showcasing their scalability in crossbar geometry, we demonstrate their potential as functional artificial synapses. The results obtained from this study can be useful for the development of hardware-brain-inspired computational systems.

2.
Neural Netw ; 166: 512-523, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37579580

ABSTRACT

Neural networks implemented in memristor-based hardware can provide fast and efficient in-memory computation, but traditional learning methods such as error back-propagation are hardly feasible in it. Spiking neural networks (SNNs) are highly promising in this regard, as their weights can be changed locally in a self-organized manner without the demand for high-precision changes calculated with the use of information almost from the entire network. This problem is rather relevant for solving control tasks with neural-network reinforcement learning methods, as those are highly sensitive to any source of stochasticity in a model initialization, training, or decision-making procedure. This paper presents an online reinforcement learning algorithm in which the change of connection weights is carried out after processing each environment state during interaction-with-environment data generation. Another novel feature of the algorithm is that it is applied to SNNs with memristor-based STDP-like learning rules. The plasticity functions are obtained from real memristors based on poly-p-xylylene and CoFeB-LiNbO3 nanocomposite, which were experimentally assembled and analyzed. The SNN is comprised of leaky integrate-and-fire neurons. Environmental states are encoded by the timings of input spikes, and the control action is decoded by the first spike. The proposed learning algorithm solves the Cart-Pole benchmark task successfully. This result could be the first step towards implementing a real-time agent learning procedure in a continuous-time environment that can be run on neuromorphic systems with memristive synapses.


Subject(s)
Electronics , Neural Networks, Computer , Online Systems , Machine Learning , Electronics/instrumentation , Algorithms
4.
Biomimetics (Basel) ; 8(2)2023 May 03.
Article in English | MEDLINE | ID: mdl-37218774

ABSTRACT

Reservoir computing systems are promising for application in bio-inspired neuromorphic networks as they allow the considerable reduction of training energy and time costs as well as an overall system complexity. Conductive three-dimensional structures with the ability of reversible resistive switching are intensively developed to be applied in such systems. Nonwoven conductive materials, due to their stochasticity, flexibility and possibility of large-scale production, seem promising for this task. In this work, fabrication of a conductive 3D material by polyaniline synthesis on a polyamide-6 nonwoven matrix was shown. An organic stochastic device with a prospective to be used in reservoir computing systems with multiple inputs was created based on this material. The device demonstrates different responses (output current) when different combinations of voltage pulses are applied to the inputs. The approach is tested in handwritten digit image classification task in simulation with the overall accuracy exceeding 96%. This approach is beneficial for processing multiple data flows within a single reservoir device.

5.
Front Neurosci ; 17: 1124950, 2023.
Article in English | MEDLINE | ID: mdl-36925742

ABSTRACT

Existing methods of neurorehabilitation include invasive or non-invasive stimulators that are usually simple digital generators with manually set parameters like pulse width, period, burst duration, and frequency of stimulation series. An obvious lack of adaptation capability of stimulators, as well as poor biocompatibility and high power consumption of prosthetic devices, highlights the need for medical usage of neuromorphic systems including memristive devices. The latter are electrical devices providing a wide range of complex synaptic functionality within a single element. In this study, we propose the memristive schematic capable of self-learning according to bio-plausible spike-timing-dependant plasticity to organize the electrical activity of the walking pattern generated by the central pattern generator.

6.
Nanomaterials (Basel) ; 12(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36234583

ABSTRACT

Convolutional neural networks (CNNs) have been widely used in image recognition and processing tasks. Memristor-based CNNs accumulate the advantages of emerging memristive devices, such as nanometer critical dimensions, low power consumption, and functional similarity to biological synapses. Most studies on memristor-based CNNs use either software models of memristors for simulation analysis or full hardware CNN realization. Here, we propose a hybrid CNN, consisting of a hardware fixed pre-trained and explainable feature extractor and a trainable software classifier. The hardware part was realized on passive crossbar arrays of memristors based on nanocomposite (Co-Fe-B)x(LiNbO3)100-x structures. The constructed 2-kernel CNN was able to classify the binarized Fashion-MNIST dataset with ~ 84% accuracy. The performance of the hybrid CNN is comparable to the other reported memristor-based systems, while the number of trainable parameters for the hybrid CNN is substantially lower. Moreover, the hybrid CNN is robust to the variations in the memristive characteristics: dispersion of 20% leads to only a 3% accuracy decrease. The obtained results pave the way for the efficient and reliable realization of neural networks based on partially unreliable analog elements.

7.
Nanotechnology ; 33(25)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35276689

ABSTRACT

Currently, there is growing interest in wearable and biocompatible smart computing and information processing systems that are safe for the human body. Memristive devices are promising for solving such problems due to a number of their attractive properties, such as low power consumption, scalability, and the multilevel nature of resistive switching (plasticity). The multilevel plasticity allows memristors to emulate synapses in hardware neuromorphic computing systems (NCSs). The aim of this work was to study Cu/poly-p-xylylene(PPX)/Au memristive elements fabricated in the crossbar geometry. In developing the technology for manufacturing such samples, we took into account their characteristics, in particular stable and multilevel resistive switching (at least 10 different states) and low operating voltage (<2 V), suitable for NCSs. Experiments on cycle to cycle (C2C) switching of a single memristor and device to device (D2D) switching of several memristors have shown high reproducibility of resistive switching (RS) voltages. Based on the obtained memristors, a formal hardware neuromorphic network was created that can be trained to classify simple patterns.

8.
Front Neurosci ; 14: 358, 2020.
Article in English | MEDLINE | ID: mdl-32410943

ABSTRACT

Here we provide a perspective concept of neurohybrid memristive chip based on the combination of living neural networks cultivated in microfluidic/microelectrode system, metal-oxide memristive devices or arrays integrated with mixed-signal CMOS layer to control the analog memristive circuits, process the decoded information, and arrange a feedback stimulation of biological culture as parts of a bidirectional neurointerface. Our main focus is on the state-of-the-art approaches for cultivation and spatial ordering of the network of dissociated hippocampal neuron cells, fabrication of a large-scale cross-bar array of memristive devices tailored using device engineering, resistive state programming, or non-linear dynamics, as well as hardware implementation of spiking neural networks (SNNs) based on the arrays of memristive devices and integrated CMOS electronics. The concept represents an example of a brain-on-chip system belonging to a more general class of memristive neurohybrid systems for a new-generation robotics, artificial intelligence, and personalized medicine, discussed in the framework of the proposed roadmap for the next decade period.

9.
Sci Rep ; 9(1): 10800, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31346245

ABSTRACT

In this paper, the resistive switching and neuromorphic behaviour of memristive devices based on parylene, a polymer both low-cost and safe for the human body, is comprehensively studied. The Metal/Parylene/ITO sandwich structures were prepared by means of the standard gas phase surface polymerization method with different top active metal electrodes (Ag, Al, Cu or Ti of ~500 nm thickness). These organic memristive devices exhibit excellent performance: low switching voltage (down to 1 V), large OFF/ON resistance ratio (up to 104), retention (≥104 s) and high multilevel resistance switching (at least 16 stable resistive states in the case of Cu electrodes). We have experimentally shown that parylene-based memristive elements can be trained by a biologically inspired spike-timing-dependent plasticity (STDP) mechanism. The obtained results have been used to implement a simple neuromorphic network model of classical conditioning. The described advantages allow considering parylene-based organic memristors as prospective devices for hardware realization of spiking artificial neuron networks capable of supervised and unsupervised learning and suitable for biomedical applications.

10.
Front Neuroinform ; 12: 79, 2018.
Article in English | MEDLINE | ID: mdl-30498439

ABSTRACT

Spiking neural networks (SNNs) are believed to be highly computationally and energy efficient for specific neurochip hardware real-time solutions. However, there is a lack of learning algorithms for complex SNNs with recurrent connections, comparable in efficiency with back-propagation techniques and capable of unsupervised training. Here we suppose that each neuron in a biological neural network tends to maximize its activity in competition with other neurons, and put this principle at the basis of a new SNN learning algorithm. In such a way, a spiking network with the learned feed-forward, reciprocal and intralayer inhibitory connections, is introduced to the MNIST database digit recognition. It has been demonstrated that this SNN can be trained without a teacher, after a short supervised initialization of weights by the same algorithm. Also, it has been shown that neurons are grouped into families of hierarchical structures, corresponding to different digit classes and their associations. This property is expected to be useful to reduce the number of layers in deep neural networks and modeling the formation of various functional structures in a biological nervous system. Comparison of the learning properties of the suggested algorithm, with those of the Sparse Distributed Representation approach shows similarity in coding but also some advantages of the former. The basic principle of the proposed algorithm is believed to be practically applicable to the construction of much more complicated and diverse task solving SNNs. We refer to this new approach as "Family-Engaged Execution and Learning of Induced Neuron Groups," or FEELING.

11.
Soft Matter ; 13(40): 7300-7306, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28976529

ABSTRACT

The memristive elements constructed using polymers - polyaniline (PANI) and polyethyleneoxide (PEO) - could be assembled on planar thin films or on 3D fibrous materials. Planar conductive PANI-based materials were made using the Langmuir-Schaefer (LS) method, and the 3D materials - using the electrospinning method which is a scalable technique. We have analyzed the influence of PANI molar mass, natures of solvent and subphase on the crystalline structure, thickness and conductivity of planar LS films, and the influence of PANI molar mass and the PANI-PEO ratio on the morphological and structural characteristics of 3D fibrous materials.

SELECTION OF CITATIONS
SEARCH DETAIL