Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 17(11): 1033-1039, 2018 11.
Article in English | MEDLINE | ID: mdl-30250176

ABSTRACT

Bimetallic nanoparticles with tailored structures constitute a desirable model system for catalysts, as crucial factors such as geometric and electronic effects can be readily controlled by tailoring the structure and alloy bonding of the catalytic site. Here we report a facile colloidal method to prepare a series of platinum-gold (PtAu) nanoparticles with tailored surface structures and particle diameters on the order of 7 nm. Samples with low Pt content, particularly Pt4Au96, exhibited unprecedented electrocatalytic activity for the oxidation of formic acid. A high forward current density of 3.77 A mgPt-1 was observed for Pt4Au96, a value two orders of magnitude greater than those observed for core-shell structured Pt78Au22 and a commercial Pt nanocatalyst. Extensive structural characterization and theoretical density functional theory simulations of the best-performing catalysts revealed densely packed single-atom Pt surface sites surrounded by Au atoms, which suggests that their superior catalytic activity and selectivity could be attributed to the unique structural and alloy-bonding properties of these single-atomic-site catalysts.

2.
Chem Commun (Camb) ; 52(78): 11631-3, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27538883

ABSTRACT

Stable platinum nanoparticles were prepared by the self-assembly of 1-dodecyne and dodec-1-deuteroyne onto bare platinum colloid surfaces. The nanoparticles exhibited consistent core size and optical properties. FTIR and NMR measurements confirmed the formation of Pt-vinylidene (Pt[double bond, length as m-dash]C[double bond, length as m-dash]CH-) interfacial linkages rather than Pt-acetylide (Pt-C[triple bond, length as m-dash]C-) and platinum-hydride (Pt-H) bonds.

3.
Nanoscale ; 8(30): 14565-72, 2016 Aug 14.
Article in English | MEDLINE | ID: mdl-27417026

ABSTRACT

Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.

4.
Nanoscale ; 8(23): 12013-21, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27242019

ABSTRACT

Stable platinum nanoparticles were successfully prepared by the self-assembly of para-substituted styrene derivatives onto the platinum surfaces as a result of platinum-catalyzed dehydrogenation and transformation of the vinyl groups to the acetylene ones, forming platinum-vinylidene/-acetylide interfacial bonds. Transmission electron microscopic measurements showed that the nanoparticles were well dispersed without apparent aggregation, suggesting sufficient protection of the nanoparticles by the organic capping ligands, and the average core diameter was estimated to be 2.0 ± 0.3 nm, 1.3 ± 0.2 nm, and 1.1 ± 0.2 nm for the nanoparticles capped with 4-tert-butylstyrene, 4-methoxystyrene, and 4-(trifluoromethyl)styrene, respectively, as a result of the decreasing rate of dehydrogenation with the increasing Taft (polar) constant of the para-substituents. Importantly, the resulting nanoparticles exhibited unique photoluminescence, where an increase of the Hammett constant of the para-substituents corresponded to a blue-shift of the photoluminescence emission, suggesting an enlargement of the HOMO-LUMO band gap of the nanoparticle-bound acetylene moieties. Furthermore, the resulting nanoparticles exhibited apparent electrocatalytic activity towards oxygen reduction in acidic media, with the best performance among the series of samples observed with the 4-tert-butylstyrene-capped nanoparticles due to an optimal combination of the nanoparticle core size and ligand effects on the bonding interactions between platinum and oxygen species.

5.
Langmuir ; 32(17): 4297-304, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27064754

ABSTRACT

Well-defined thermoswitchable Janus gold nanoparticles with stimuli-responsive hydrophilic polymer brushes were fabricated by combining ligand exchange reactions and the Langmuir technique. Stimuli-responsive polydi(ethylene glycol) methyl ether methacrylate was prepared by addition-fragmentation chain-transfer polymerization. The polymer brushes were then anchored onto the nanoparticle surface by interfacial ligand exchange reactions with hexanethiolate-protected gold nanoparticles, leading to the formation of a hydrophilic (polymer) hemisphere and a hydrophobic (hexanethiolate) one. The resulting Janus nanoparticles showed temperature-switchable wettability, hydrophobicity at high temperatures, and hydrophilicity at low temperatures, due to thermally induced conformational transition of the polymer ligands. The results further highlight the importance of interfacial engineering in the deliberate functionalization of nanoparticle materials.

6.
Soft Matter ; 12(1): 31-4, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26451801

ABSTRACT

Janus gold nanoparticles (JPs) of ∼4 nm-diameter half functionalized with 1-hexanethiol as a hydrophobic capping ligand exhibit significantly higher interfacial activity, reproducibility and rheological response when the other half is functionalized with 1,2-mercaptopropanediol (JPs-MPD) than with 2-(2-mercaptoethoxy)ethanol (JPs-MEE), both acting as hydrophilic capping ligands. The interfacial pressure measured by pendant drop tensiometry reaches 50 mN m(-1) and 35 mN m(-1) for the JPs-MPD at the water/air and water/decane interface, respectively. At the same area per particle, the JPs-MEE reveal significantly lower interfacial pressure: 15 mN m(-1) and 5 mN m(-1) at the water/air and water/decane interface, respectively. Interfacial dilatational rheology measurements also show an elastic shell behaviour at higher compression states for JPs-MPD while the JPs-MEE present near-zero elasticity. The enhanced interfacial activity of JPs-MPD is explained in terms of chemical and hydration differences between the MPD and MEE ligands, where MPD has a shorter hydrocarbon chain and twice as many hydroxyl terminal groups as MEE.

7.
Angew Chem Int Ed Engl ; 55(4): 1455-9, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26644066

ABSTRACT

Two types of platinum nanoparticles (NPs) functionalized with ethynylferrocene were prepared. The subnanometer-sized NPs (Pt10eFc) showed semiconductor-like characteristics with a bandgap of about 1.0 eV, and the other was metal-like with a core size of about 2 nm (Pt314eFc) and no significant bandgap. IR spectroscopic measurements showed a clear red-shift of the C≡C and ferrocenyl ring =C-H vibrational energies with increasing particle core size owing to enhanced intraparticle charge delocalization between the particle-bound ferrocenyl moieties. Electrochemical measurements showed two pairs of voltammetric peaks owing to intervalence charge transfer between the ferrocenyl groups on the nanoparticle surface, which was apparently weaker with Pt10 eFc than with Pt314 eFc. Significantly, the former might be markedly enhanced with UV photoirradiation owing to enhanced nanoparticle electronic conductivity, whereas no apparent effects were observed with the latter.

8.
Phys Chem Chem Phys ; 16(35): 18736-42, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25075931

ABSTRACT

Stable ruthenium nanoparticles protected by ferrocenecarboxylates (RuFCA) were synthesized by thermolytic reduction of RuCl3 in 1,2-propanediol. The resulting particles exhibited an average core diameter of 1.22 ± 0.23 nm, as determined by TEM measurements. FTIR and (1)H NMR spectroscopic measurements showed that the ligands were bound onto the nanoparticle surface via Ru-O bonds in a bidentate configuration. XPS measurements exhibited a rather apparent positive shift of the Fe2p binding energy when the ligands were bound on the nanoparticle surface, which was ascribed to the formation of highly polarized Ru-O interfacial bonds that diminished the electron density of the iron centers. Consistent results were obtained in electrochemical measurements where the formal potential of the nanoparticle-bound ferrocenyl moieties was found to increase by ca. 120 mV. Interestingly, galvanic exchange reactions of the RuFCA nanoparticles with Pd(ii) followed by hydrothermal treatment at 200 °C led to (partial) decarboxylation of the ligands such that the ferrocenyl moieties were now directly bonded to the metal surface, as manifested in voltammetric measurements that suggested intervalence charge transfer between the nanoparticle-bound ferrocene groups.


Subject(s)
Ferrous Compounds/chemistry , Metal Nanoparticles/chemistry , Ruthenium/chemistry , Catalysis , Iron/chemistry , Ligands , Magnetic Resonance Spectroscopy , Metallocenes , Palladium/chemistry , Particle Size , Photoelectron Spectroscopy , Propylene Glycol/chemistry , Spectroscopy, Fourier Transform Infrared
9.
Nanoscale ; 4(3): 1010-5, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22222582

ABSTRACT

Water-soluble carbon nanoparticles were prepared by refluxing natural gas soot in concentrated nitric acid. The surface of the resulting nanoparticles was found to be decorated with a variety of oxygenated species, as suggested by spectroscopic measurements. Back potentiometric titration of the nanoparticles was employed to quantify the coverage of carboxylic, lactonic, and phenolic moieties on the particle surface by taking advantage of their vast difference of acidity (pK(a)). The results were largely consistent with those reported in previous studies with other carbonaceous (nano)materials. Additionally, the presence of ortho- and para-quinone moieties on the nanoparticle surface was confirmed by selective labelling with o-phenylenediamine, as manifested in X-ray photoelectron spectroscopy, photoluminescence, and electrochemical measurements. The results further supported the arguments that the surface functional moieties that were analogous to 9,10-phenanthrenequinone were responsible for the unique photoluminescence of the nanoparticles and the emission might be regulated by surface charge state, as facilitated by the conjugated graphitic core matrix.

SELECTION OF CITATIONS
SEARCH DETAIL