Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Astron ; 8(7): 879-898, 2024.
Article in English | MEDLINE | ID: mdl-39049827

ABSTRACT

Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 µm to 12 µm with the JWST's Mid-Infrared Instrument. The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1-6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet's nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.

2.
Nature ; 630(8017): 609-612, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718834

ABSTRACT

Characterizing rocky exoplanets is a central aim of astronomy, and yet the search for atmospheres on rocky exoplanets has so far resulted in either tight upper limits on the atmospheric mass1-3 or inconclusive results4-6. The 1.95REarth and 8.8MEarth planet 55 Cancri e (abbreviated 55 Cnc e), with a predominantly rocky composition and an equilibrium temperature of around 2,000 K, may have a volatile envelope (containing molecules made from a combination of C, H, O, N, S and P elements) that accounts for up to a few percent of its radius7-13. The planet has been observed extensively with transmission spectroscopy14-22 and its thermal emission has been measured in broad photometric bands23-26. These observations disfavour a primordial H2/He-dominated atmosphere but cannot conclusively determine whether the planet has a secondary atmosphere27,28. Here we report a thermal emission spectrum of the planet obtained by the NIRCam and MIRI instruments aboard the James Webb Space Telescope (JWST) from 4 to 12 µm. The measurements rule out the scenario in which the planet is a lava world shrouded by a tenuous atmosphere made of vaporized rock29-32 and indicate a bona fide volatile atmosphere that is probably rich in CO2 or CO. This atmosphere can be outgassed from and sustained by a magma ocean.

3.
Nature ; 626(8001): 979-983, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232945

ABSTRACT

The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1-3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1-10 ppm)4-9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 µm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 µm in the 5-12-µm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5-25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 µm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1-8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.

SELECTION OF CITATIONS
SEARCH DETAIL