Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 123(1): 39-45, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27613406

ABSTRACT

Cyanobacteria engineered for production of biofuels and biochemicals from carbon dioxide represent a promising area of research in relation to a sustainable economy. Previously, we have succeeded in producing isopropanol from cellular acetyl-CoA by means of Synechococcus elongatus PCC 7942 into which a synthetic metabolic pathway was introduced. The isopropanol production by this synthetic metabolic pathway requires acetate; therefore, the cells grown under photosynthetic conditions have to be transferred to a dark and anaerobic conditions to produce acetate. In this study, we achieved acetate production under photosynthetic conditions by S. elongatus PCC 7942 into which we introduced the pta gene encoding phosphate acetyltransferase from Escherichia coli. The metabolic modification (via pta introduction) of the isopropanol-producing strain enabled production of isopropanol under photosynthetic conditions. During 14 days of production, the titer of isopropanol reached 0.55 mM (33.1 mg/l) with an intermediate product, acetone, at 0.21 mM (12.2 mg/l).


Subject(s)
2-Propanol/metabolism , Metabolic Engineering , Photosynthesis , Synechococcus/genetics , Synechococcus/metabolism , Biofuels , Escherichia coli/enzymology , Escherichia coli/genetics , Phosphate Acetyltransferase/genetics
3.
Metabolomics ; 12: 26, 2016.
Article in English | MEDLINE | ID: mdl-26766939

ABSTRACT

Cyanobacterial 1-butanol production is an important model system for direct conversion of CO2 to fuels and chemicals. Metabolically-engineered cyanobacteria introduced with a heterologous Coenzyme A (CoA)-dependent pathway modified from Clostridium species can convert atmospheric CO2 into 1-butanol. Efforts to optimize the 1-butanol pathway in Synechococcus elongatus PCC 7942 have focused on the improvement of the CoA-dependent pathway thus, probing the in vivo metabolic state of the CoA-dependent pathway is essential for identifying its limiting steps. In this study, we performed quantitative target analysis and kinetic profiling of acyl-CoAs in the CoA-dependent pathway by reversed phase ion-pair liquid chromatography-triple quadrupole mass spectrometry. Using 13C-labelled cyanobacterial cell extract as internal standard, measurement of the intracellular concentration of acyl-CoAs revealed that the reductive reaction of butanoyl-CoA to butanal is a possible rate-limiting step. In addition, improvement of the butanoyl-CoA to butanal reaction resulted in an increased rate of acetyl-CoA synthesis by possibly compensating for the limitation of free CoA species. We inferred that the efficient recycling of free CoA played a key role in enhancing the conversion of pyruvate to acetyl-CoA.

4.
Sci Rep ; 5: 11617, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26130086

ABSTRACT

Ralstonia eutropha is a facultative chemolithoautotrophic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle for CO2 fixation. This study showed that R. eutropha strain H16G incorporated (13)CO2, emitted by the oxidative decarboxylation of [1-(13)C1]-glucose, into key metabolites of the CBB cycle and finally into poly(3-hydroxybutyrate) [P(3HB)] with up to 5.6% (13)C abundance. The carbon yield of P(3HB) produced from glucose by the strain H16G was 1.2 times higher than that by the CBB cycle-inactivated mutants, in agreement with the possible fixation of CO2 estimated from the balance of energy and reducing equivalents through sugar degradation integrated with the CBB cycle. The results proved that the 'gratuitously' functional CBB cycle in R. eutropha under aerobic heterotrophic conditions participated in the reutilization of CO2 emitted during sugar degradation, leading to an advantage expressed as increased carbon yield of the storage compound. This is a new insight into the role of the CBB cycle, and may be applicable for more efficient utilization of biomass resources.


Subject(s)
Carbohydrate Metabolism , Carbon Dioxide/metabolism , Photosynthesis , Carbohydrate Metabolism/drug effects , Carbon/metabolism , Carbon Isotopes , Cupriavidus necator/drug effects , Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Gene Expression Regulation, Bacterial/drug effects , Glucose/pharmacology , Hydroxybutyrates/metabolism , Metabolome/drug effects , Metabolomics , Photosynthesis/drug effects , Polyesters/metabolism
5.
Metabolites ; 4(2): 499-516, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24957038

ABSTRACT

Recently, cyanobacteria have become one of the most attractive hosts for biochemical production due to its high proliferative ability and ease of genetic manipulation. Several researches aimed at biological production using modified cyanobacteria have been reported previously. However, to improve the yield of bioproducts, a thorough understanding of the intercellular metabolism of cyanobacteria is necessary. Metabolic profiling techniques have proven to be powerful tools for monitoring cellular metabolism of various organisms and can be applied to elucidate the details of cyanobacterial metabolism. In this study, we constructed a metabolic profiling method for cyanobacteria using 13C-labeled cell extracts as internal standards. Using this method, absolute concentrations of 84 metabolites were successfully determined in three cyanobacterial strains which are commonly used as background strains for metabolic engineering. By comparing the differences in basic metabolic potentials of the three cyanobacterial strains, we found a well-correlated relationship between intracellular energy state and growth in cyanobacteria. By integrating our results with the previously reported biological production pathways in cyanobacteria, we found putative limiting step of carbon flux. The information obtained from this study will not only help gain insights in cyanobacterial physiology but also serve as a foundation for future metabolic engineering studies using cyanobacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...