Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
JBMR Plus ; 8(7): ziae070, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38868596

ABSTRACT

The International Society of Bone Morphometry (ISBM) is dedicated to advancing research, education, and clinical practice for osteoporosis and other bone disorders by developing and improving tools for the quantitative imaging and analysis of bone. Its initial core mission was to promote the proper use of morphometric techniques in bone research and to educate and train clinicians and basic scientists in bone morphometry. This article chronicles the evolution of the ISBM and the history and development of bone morphometric techniques for the past 50-years, starting with workshops on bone morphometry in 1973, to the formal incorporation of the ISBM in 1996, to today. We also provide a framework and vision for the coming decades. This effort was led by ISBM presidents Dr Erica L. Scheller (2022-2024) and Dr Thomas J. Wronski (2009-2012) in collaboration with all other living ISBM presidents. Though the underlying techniques and questions have changed over time, the need for standardization of established tools and discovery of novel approaches for bone morphometry remains a constant. The ISBM fulfills this need by providing a forum for the exchange of ideas, with a philosophy that encourages the open discussion of pitfalls and challenges among clinicians, scientists, and industry partners. This facilitates the rapid development and adaptation of tools to meet emerging demands within the field of bone health at a high level.

2.
Calcif Tissue Int ; 113(6): 640-650, 2023 12.
Article in English | MEDLINE | ID: mdl-37910222

ABSTRACT

Despite the risk of complications, high dose radiation therapy is increasingly utilized in the management of selected bone malignancies. In this study, we investigate the impact of moderate to high dose radiation (over 50 Gy) on bone metabolism and structure. Between 2015 and 2018, patients with a primary malignant bone tumor of the sacrum that were either treated with high dose definitive radiation only or a combination of moderate to high dose radiation and surgery were prospectively enrolled at a single institution. Quantitative CTs were performed before and after radiation to determine changes in volumetric bone mineral density (BMD) of the irradiated and non-irradiated spine. Bone histomorphometry was performed on biopsies of the irradiated sacrum and the non-irradiated iliac crest of surgical patients using a quadruple tetracycline labeling protocol. In total, 9 patients were enrolled. Two patients received radiation only (median dose 78.3 Gy) and 7 patients received a combination of preoperative radiation (median dose 50.4 Gy), followed by surgery. Volumetric BMD of the non-irradiated lumbar spine did not change significantly after radiation, while the BMD of the irradiated sacrum did (pre-radiation median: 108.0 mg/cm3 (IQR 91.8-167.1); post-radiation median: 75.3 mg/cm3 (IQR 57.1-110.2); p = 0.010). The cancellous bone of the non-irradiated iliac crest had a stable bone formation rate, while the irradiated sacrum showed a significant decrease in bone formation rate [pre-radiation median: 0.005 mm3/mm2/year (IQR 0.003-0.009), post-radiation median: 0.001 mm3/mm2/year (IQR 0.001-0.001); p = 0.043]. Similar effects were seen in the cancellous and endocortical envelopes. This pilot study shows a decrease of volumetric BMD and bone formation rate after high-dose radiation therapy. Further studies with larger cohorts and other endpoints are needed to get more insight into the effect of radiation on bone. Level of evidence: IV.


Subject(s)
Bone Density , Sacrum , Humans , Pilot Projects , Sacrum/surgery , Lumbar Vertebrae , Ilium
3.
J Clin Densitom ; 25(4): 649-667, 2022.
Article in English | MEDLINE | ID: mdl-36280582

ABSTRACT

The 22nd Annual Santa Fe Bone Symposium (SFBS) was a hybrid meeting held August 5-6, 2022, with in-person and virtual attendees. Altogether, over 400 individuals registered, a majority of whom attended in-person, representing many states in the USA plus 7 other countries. The SFBS included 10 plenary presentations, 2 faculty panel discussions, satellite symposia, Bone Health & Osteoporosis Foundation Fracture Liaison Service Boot Camp, and a Project ECHO workshop, with lively interactive discussions for all events. Topics of interest included fracture prevention at different stages of life; how to treat and when to change therapy; skeletal health in cancer patients; advanced imaging to assess bone strength; the state of healthcare in the USA; osteosarcopenia; vitamin D update; perioperative bone health care; new guidelines for managing primary hyperparathyroidism; new concepts on bone modeling and remodeling; and an overview on the care of rare bone diseases, including hypophosphatasia, X-linked hypophosphatemia, tumor induced osteomalacia, osteogenesis imperfecta, fibrodysplasia ossificans progressiva, and osteopetrosis. The SFBS was preceded by the Santa Fe Fellows Workshop on Osteoporosis and Metabolic Bone Diseases, a collaboration of the Endocrine Fellows Foundation and the Osteoporosis Foundation of New Mexico. From the Workshop, 4 participating fellows were selected to give oral presentations at the bone symposium. These proceedings represent the clinical highlights of 2022 SFBS presentations and the discussions that followed, all with the aim of optimizing skeletal health and minimizing the consequences of fragile bones.


Subject(s)
Bone Diseases, Metabolic , Osteoporosis , Osteoporotic Fractures , Humans , Absorptiometry, Photon , Osteoporosis/drug therapy , Bone Diseases, Metabolic/therapy , Osteoporotic Fractures/prevention & control
4.
Bone ; 162: 116478, 2022 09.
Article in English | MEDLINE | ID: mdl-35779845

ABSTRACT

Postmenopausal osteoporosis (PMOP) therapies are frequently evaluated by bone mineral density (BMD) gains against patients receiving placebo (calcium and vitamin D supplementation, a mild bone turnover-suppressing intervention), which is not equivalent to either healthy or treatment-naive PMOP. The aim of the present observational study was to assess the effects of TPTD treatment in PMOP (20 µg, once daily) at 6 (TPTD 6m; n = 28, age 65 ± 7.3 years), and 24 (TPTD 24m; n = 32, age 67.4 ± 6.15 years) months on bone quality indices at actively forming trabecular surfaces (with fluorescent double labels). Data from the TPTD-treated PMOP patients were compared with those in healthy adult premenopausal women (HC; n = 62, age 40.5 ± 10.6 years), and PMOP receiving placebo (PMOP-PLC; n = 94, age 70.6 ± 4.5 years). Iliac crest biopsies were analyzed by Raman microspectroscopy at three distinct tissue ages: mid-distance between the second label and the bone surface, mid-distance between the two labels, and 1 µm behind the first label. Mineral to matrix ratio (MM), mineral maturity/crystallinity (MMC), tissue water (TW), glycosaminoglycan (GAGs), and pyridinoline (Pyd) content were determined. Outcomes were compared by ANCOVA with subject age and tissue age as covariates, and health status as a fixed factor, followed by Sidak's post-hoc testing (significance assigned to p < 0.05). Both TPTD groups increased MM compared to PMOP-PLC. While TPTD 6m had values similar to HC, TPTD 24m had higher values compared to either HC or TPTD 6m. Both TPTD groups had lower MMC values compared to PMOP-PLC and similar to HC. TPTD 6m patients had higher TW content compared to HC, while TPTD 24m had values similar to HC and lower than either PMOP-PLC or TPTD 6m. Both TPTD groups had lower GAG content compared to HC group, while TPTD 6m had higher values compared to PMOP-PLC. Finally, TPTD 6m patients had higher Pyd content compared to HC and lower compared to PMOP-PLC, while TPTD 24m had lower values compared to PMOP-PLC and TPTD 6m, and similar to HC group. The results of the present study indicate that effects of TPTD on forming trabecular bone quality indices depend on treatment duration. At the recommended length of 24 m, TPTD restores bone mineral and organic matrix quality indices (MMC, TW, Pyd content) to premenopausal healthy (HC) levels.


Subject(s)
Bone Density Conservation Agents , Osteoporosis, Postmenopausal , Adult , Aged , Bone Density , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Female , Humans , Ilium/pathology , Middle Aged , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/pathology , Teriparatide/pharmacology , Teriparatide/therapeutic use
5.
J Bone Miner Res ; 37(5): 856-864, 2022 05.
Article in English | MEDLINE | ID: mdl-35249242

ABSTRACT

In postmenopausal women with osteoporosis, denosumab (DMAb) therapy through 10 years resulted in significantly higher degree of mineralization of bone, with a subsequent increase from years 2-3 to year 5 and no further difference between years 5 and 10. Our aim was to assess the variables reflecting the quality of bone mineral and organic matrix (Fourier transform infrared microspectroscopy), and the microhardness of bone (Vickers microindentation). Cross-sectional assessments were performed in blinded fashion on iliac bone biopsies from osteoporotic women (72 from FREEDOM trial, 49 from FREEDOM Extension trial), separately in cortical and cancellous compartments. After 2-3 years of DMAb, mineral/matrix ratio and microhardness of cortical bone were significantly higher compared with placebo, whereas mineral maturity, mineral crystallinity, mineral carbonation, and collagen maturity were not different in both bone compartments. Through 5 years of DMAb, mineral carbonation was significantly lower and mineral/matrix ratio, mineral maturity, and crystallinity were significantly higher versus 2-3 years and were not different between 5 and 10 years, with the exception of mineral maturity in cancellous bone. These data support a transition of mineral to more mature crystals (within physiological range) and the completeness of secondary mineralization within 5 years of DMAb treatment. Microhardness in cortical and cancellous compartments was significantly lower at 5 years of DMAb versus 2-3 years and was not different from years 5 to 10. The lower microhardness at years 5 and 10 is likely the result of maturation of the organic matrix in a persistently low state of bone remodeling over 5 and 10 years. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Density Conservation Agents , Osteoporosis, Postmenopausal , Bone Density , Bone Density Conservation Agents/therapeutic use , Cross-Sectional Studies , Denosumab/therapeutic use , Female , Humans , Ilium/pathology , Minerals , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/pathology , Postmenopause
6.
Bone ; 157: 116342, 2022 04.
Article in English | MEDLINE | ID: mdl-35092891

ABSTRACT

PURPOSE: We have previously shown that a brief course of teriparatide (TPTD) stimulates bone formation in the cancellous and endocortical envelopes of the human femoral neck, and the regions of tension and compression respond differently. The purpose of the present study was to determine how much of the new bone was formed by modeling-based formation (MBF) or remodeling-based formation (RBF). METHODS: We performed a double-blind trial of TPTD vs. placebo (PBO) in patients about to undergo a total hip replacement (THR) for osteoarthritis. Participants were randomized to receive daily TPTD 20 µg or PBO for an average of 6.1 weeks (range 4.1-11.8 weeks) prior to THR. After an average of 3 weeks of study drug, double tetracycline labels were administered per standard protocol. During the THR an intact sample of the mid-femoral neck (FN) was procured; this was fixed, embedded, and sectioned transversely. Histomorphometric analysis was performed in the cancellous, endocortical, and periosteal envelopes. Additionally, separate analyses were performed in the tensile and compressive regions of the endocortical and periosteal envelopes. Sites of new bone formation were identified by the presence of tetracycline labels and designated as MBF if the underlying cement line was smooth and as RBF if it was scalloped. New bone formation on smooth cement lines adjacent to scalloped reversal lines was designated as overflow RBF (oRBF). The referent for all indices was bone surface (BS). RESULTS: In the cancellous and endocortical envelopes, the proportion of mineralizing surface engaged in RBF and oRBF was higher in the TPTD-treated than the PBO-treated subjects. There was also a trend toward higher MBF in TPTD vs. PBO in both envelopes. In linear mixed-effects models, TPTD was predicted to increase formation differently on the tensile and compressive surfaces depending on patient-specific anatomy, including body weight, FN angle, offset, and cortical width and porosity. Eroded surface was not different between groups in either envelope and no significant differences were observed in any parameter in the periosteal envelope. CONCLUSION: We conclude that the predominant early effect of TPTD in the human femoral neck is to stimulate RBF and oRBF with a trend toward an increase in MBF in the endocortical and cancellous envelopes.


Subject(s)
Bone Density Conservation Agents , Teriparatide , Bone Density , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Double-Blind Method , Femur Neck , Humans , Osteogenesis , Teriparatide/therapeutic use , Tetracyclines/pharmacology
7.
Bone ; 154: 116253, 2022 01.
Article in English | MEDLINE | ID: mdl-34743040

ABSTRACT

Osteoporosis in premenopausal women with intact gonadal function and no known secondary cause of bone loss is termed idiopathic osteoporosis (IOP). Women with IOP diagnosed in adulthood have profound bone structural deficits and often report adult and childhood fractures, and family history of osteoporosis. Some have very low bone formation rates (BFR/BS) suggesting osteoblast dysfunction. These features led us to investigate potential genetic etiologies of bone fragility. In 75 IOP women (aged 20-49) with low trauma fractures and/or very low BMD who had undergone transiliac bone biopsies, we performed Whole Exome Sequencing (WES) using our variant analysis pipeline to select candidate rare and novel variants likely to affect known disease genes. We ran rare-variant burden analyses on all genes individually and on phenotypically-relevant gene sets. For particular genes implicated in osteoporosis, we also assessed the frequency of all (including common) variants in subjects versus 6540 non-comorbid female controls. The variant analysis pipeline identified 4 women with 4 heterozygous variants in LRP5 and PLS3 that were considered to contribute to osteoporosis. All 4 women had adult fractures, and 3 women also had multiple fractures, childhood fractures and a family history of osteoporosis. Two women presented during pregnancy/lactation. In an additional 4 subjects, 4 different relevant Variants of Uncertain Significance (VUS) were detected in the genes FKBP10, SLC34A3, and HGD. Of the subjects with VUS, 2 had multiple adult fractures, childhood fractures, and presented during pregnancy/lactation, and 2 had nephrolithiasis. BFR/BS varied among the 8 subjects with identified variants; BFR/BS was quite low in those with variants that are likely to have adverse effects on bone formation. The analysis pipeline did not discover candidate variants in COL1A1, COL1A2, WNT, or ALPL. Although we found several novel and rare variants in LRP5, cases did not have an increased burden of common LRP5 variants compared to controls. Cohort-wide collapsing analysis did not reveal any novel disease genes with genome-wide significance for qualifying variants between controls and our 75 cases. In summary, WES revealed likely pathogenic variants or relevant VUS in 8 (11%) of 75 women with IOP. Notably, the genetic variants identified were consistent with the affected women's diagnostic evaluations that revealed histological evidence of low BFR/BS or biochemical evidence of increased bone resorption and urinary calcium excretion. These results, and the fact that the majority of the women had no identifiable genetic etiology, also suggest that the pathogenesis of and mechanisms leading to osteoporosis in this cohort are heterogeneous. Future research is necessary to identify both new genetic and non-genetic etiologies of early-onset osteoporosis.


Subject(s)
Osteoporosis , Osteoporotic Fractures , Adult , Bone Density , Child , Female , Humans , Middle Aged , Pregnancy , Premenopause , Exome Sequencing , Young Adult
8.
JBMR Plus ; 5(6): e10494, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34189383

ABSTRACT

Postmenopausal osteoporosis is a disease manifesting in degradation of bone mass and microarchitecture, leading to weakening and increased risk of fracture. Clinical trials are an essential tool for evaluating new treatments and may provide further mechanistic understanding of their effects in vivo. However, the histomorphometry from clinical trials is limited to 2D images and reflects single time points. Biochemical markers of bone turnover give global insight into a drug's action, but not the local dynamics of the bone remodeling process and the cells involved. Additionally, comparative trials necessitate separate treatment groups, meaning only aggregated measures can be compared. In this study, in silico modeling based on histomorphometry and pharmacokinetic data was used to assess the effects of treatment versus control on µCT scans of the same biopsy samples over time, matching the changes in bone volume fraction observed in biopsies from denosumab and placebo groups through year 10 of the FREEDOM Extension trial. In the simulation, treatment decreased osteoclast number, which led to a modest increase in trabecular thickness and osteocyte stress shielding. Long-term bone turnover suppression led to increased RANKL production, followed by a small increase in osteoclast number at the end of the 6-month-dosing interval, especially at the end of the Extension study. Lack of treatment led to a significant loss of bone mass and structure. The study's results show how in silico models can generate predictions of denosumab cellular action over a 10-year period, matching static and dynamic morphometric measures assessed in clinical biopsies. The use of in silico models with clinical trial data can be a method to gain further insight into fundamental bone biology and how treatments can perturb this. With rigorous validation, such models could be used for informing the design of clinical trials, such that the number of participants could be reduced to a minimum to show efficacy. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
J Bone Miner Res ; 36(7): 1225-1234, 2021 07.
Article in English | MEDLINE | ID: mdl-33724542

ABSTRACT

We prospectively assessed, with predefined criteria, the location and rates of all femur fractures (hip, subtrochanteric/femoral shaft [ST/FS], including atypical [AFF] and distal fractures) in women at increased fracture risk during treatment with the cathepsin K inhibitor, odanacatib (ODN), or placebo over 5 years in the Long-Term ODN Fracture Trial (LOFT and LOFT Extension [NCT00529373, EudraCT 2007-002693-66]). ODN was an investigational antiresorptive agent previously in development as an osteoporosis treatment that, unlike bisphosphonates, reduces bone formation only transiently. Women aged ≥65 years with a bone mineral density (BMD) T-score ≤-2.5 at the total hip (TH) or femoral neck (FN) or with a radiographic vertebral fracture and T-scores ≤-1.5 at the TH or FN were randomized (1:1) to receive ODN 50 mg/week or placebo. All patients received vitamin D3 (5600 IU/week) and calcium (total 1200 mg/d); the analysis included 16,071 women. Rates of all adjudicated low-energy femoral fractures were 0.38 versus 0.58/100 patient-years for ODN and placebo, respectively (hazard ratio [HR] = 0.65; 95% confidence interval [CI] 0.51-0.82; nominal p < .001), and for low-energy hip fractures were 0.29 versus 0.56/100 patient-years, respectively (HR = 0.52; 95% CI 0.40-0.67; p < .001). The cumulative incidence of combined hip and ST/FS or hip fractures alone in the ODN group was consistently lower than in the placebo group (1.93% versus 3.11% for combined fractures and 1.53% versus 3.03% for hip fractures at 5 years, respectively). However, low-energy ST/FS fractures were more frequent in ODN-treated women than in placebo-treated women (24 versus 6, respectively). Among these, 12 fractures were adjudicated as AFF in 10 patients treated with ODN (0.03/100 patient-years) compared with none in the 6 placebo-treated women (estimated difference 0.03; 95% CI 0.02-0.06). These results provide insight into possible pathogeneses of AFF, suggesting that the current criteria for diagnosing these fractures may need to be reconsidered. © 2021 American Society for Bone and Mineral Research (ASBMR)..


Subject(s)
Bone Density Conservation Agents , Hip Fractures , Osteoporosis, Postmenopausal , Osteoporosis , Aged , Biphenyl Compounds , Bone Density , Bone Density Conservation Agents/therapeutic use , Double-Blind Method , Female , Femur Neck , Hip Fractures/drug therapy , Hip Fractures/epidemiology , Humans , Incidence , Osteoporosis, Postmenopausal/complications , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/epidemiology , Postmenopause
10.
Curr Osteoporos Rep ; 19(2): 189-205, 2021 04.
Article in English | MEDLINE | ID: mdl-33635520

ABSTRACT

PURPOSE OF REVIEW: There are now three anabolic agents available for the treatment of postmenopausal women at high risk for fracture. The purpose of this review is to supply a rationale to aid in determining which agent should be used in which clinical settings. RECENT FINDINGS: Studies over the last decade have shown that anabolic agents produce faster and larger effects against fracture than antiresorptive agents. Furthermore, trials evaluating anabolic antiresorptive treatment sequences have shown that anabolic first treatment strategies produce the greatest benefits to bone density, particularly in the hip region. However, there are no head-to-head evaluations of the three anabolic therapies with fracture outcomes or bone density, and these studies are not likely to occur. How to decide which agent to use at which time in a woman's life is unknown. We review the most significant clinical trials of anabolic agents which have assessed fracture, areal or volumetric bone density, microarchitecture, and/or bone strength, as well as information gleaned from histomorphometry studies to provide a rationale for consideration of one agent vs another in various clinical settings. There is no definitive answer to this question; all three agents increase bone strength and reduce fracture risk rapidly. Since the postmenopausal lifespan could be as long as 40-50 years, it is likely that very high-risk women will utilize different anabolic agents at different points in their lives.


Subject(s)
Anabolic Agents/therapeutic use , Osteoporosis, Postmenopausal/drug therapy , Osteoporotic Fractures/prevention & control , Bone Density/drug effects , Female , Humans
11.
Bone ; 145: 115848, 2021 04.
Article in English | MEDLINE | ID: mdl-33453443

ABSTRACT

The ability of bone to resist fracture is dependent on the composite nature of its mineral and organic matrix content. Teriparatide (TPTD) and zoledronic acid (ZOL) are approved anabolic and antiresorptive therapies, respectively, to reduce fracture risk in women with postmenopausal osteoporosis. In the SHOTZ study, postmenopausal women with osteoporosis were treated with TPTD (20 µg daily, subcutaneous) or ZOL (5 mg/year, intravenous infusion) for 24 months. Iliac crest biopsies were obtained at 6 months and again at 24 months from approximately one third of the original study cohort. To investigate the early effects of these two drugs on the quality of newly formed bone, we used vibrational spectroscopic techniques to analyze tetracycline-labelled transiliac biopsies obtained from participants at the 6-month time point. Raman spectra were acquired at forming trabecular and intra-cortical surfaces (identified by fluorescent double labels), to determine mineral, organic matrix, glycosaminoglycan, and tissue water content, as well as mineral maturity/crystallinity at three specific tissue ages (1-5, 15, and ≥25 days). Fourier transformed infrared microspectroscopy was used to determine pyridinoline/divalent collagen cross-link ratios. At 6 months, treatment with TPTD versus ZOL resulted in lower mineral and higher organic matrix content, increased tissue water content, and lower mineral/matrix, mineral maturity/crystallinity, glycosaminoglycan content, and pyridinoline/divalent enzymatic collagen cross-link ratio. Our results suggest that TPTD and ZOL have differential effects on material properties of newly formed bone at individual remodeling sites, highlighting their different mechanisms of action.


Subject(s)
Bone Density Conservation Agents , Osteoporosis, Postmenopausal , Bone Density , Bone Density Conservation Agents/therapeutic use , Female , Humans , Minerals , Osteoporosis, Postmenopausal/drug therapy , Postmenopause , Teriparatide/pharmacology , Zoledronic Acid
12.
J Bone Miner Res ; 36(4): 644-653, 2021 04.
Article in English | MEDLINE | ID: mdl-33434314

ABSTRACT

Anabolic osteoporosis drugs improve bone mineral density by increasing bone formation. The objective of this study was to evaluate the early effects of abaloparatide on indices of bone formation and to assess the effect of abaloparatide on modeling-based formation (MBF), remodeling-based formation (RBF), and overflow MBF (oMBF) in transiliac bone biopsies. In this open-label, single-arm study, 23 postmenopausal women with osteoporosis were treated with 80 µg abaloparatide daily. Subjects received double fluorochrome labels before treatment and before biopsy collection at 3 months. Change in dynamic histomorphometry indices in four bone envelopes were assessed. Median mineralizing surface per unit of bone surface (MS/BS) increased to 24.7%, 48.7%, 21.4%, and 16.3% of total surface after 3 months of abaloparatide treatment, representing 5.5-, 5.2-, 2.8-, and 12.9-fold changes, on cancellous, endocortical, intracortical, and periosteal surfaces (p < .001 versus baseline for all). Mineral apposition rate (MAR) was significantly increased only on intracortical surfaces. Bone formation rate (BFR/BS) was significantly increased on all four bone envelopes. Significant increases versus baseline were observed in MBF on cancellous, endocortical, and periosteal surfaces, for oMBF on cancellous and endocortical surfaces, and for RBF on cancellous, endocortical, and intracortical surfaces. Overall, modeling-based formation (MBF + oMBF) accounted for 37% and 23% of the increase in bone-forming surface on the endocortical and cancellous surfaces, respectively. Changes from baseline in serum biomarkers of bone turnover at either month 1 or month 3 were generally good surrogates for changes in histomorphometric endpoints. In conclusion, treatment with abaloparatide for 3 months stimulated bone formation on cancellous, endocortical, intracortical, and periosteal envelopes in transiliac bone biopsies obtained from postmenopausal women with osteoporosis. These increases reflected stimulation of both remodeling- and modeling-based bone formation, further elucidating the mechanisms by which abaloparatide improves bone mass and lowers fracture risk. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Osteoporosis, Postmenopausal , Osteoporosis , Aged , Bone Density , Female , Humans , Middle Aged , Osteogenesis , Osteoporosis, Postmenopausal/drug therapy , Parathyroid Hormone-Related Protein/pharmacology , Postmenopause
13.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-32876328

ABSTRACT

CONTEXT: Premenopausal women with idiopathic osteoporosis (IOP) have abnormal skeletal microarchitecture and variable tissue-level bone formation rate (BFR). OBJECTIVES: Compare 6 months (M) of teriparatide versus placebo on areal bone mineral density (aBMD) by dual-energy x-ray absorptiometry (DXA), bone turnover markers (BTMs) and BFR at 3M by quadruple-labeled transiliac biopsy. Characterize 12M and 24M effects of teriparatide on aBMD and whether BTMs and BFR predict response. DESIGN: 6M phase 2 randomized controlled trial (RCT) followed by open extension. SETTING: Tertiary referral centers. PATIENTS: Premenopausal women with IOP. INTERVENTIONS: A total of 41 women were randomized to either teriparatide 20 mcg (n = 28) or placebo (n = 13). After 6M, those on placebo switched to teriparatide for 24M; those on teriparatide continued for 18M. MAIN OUTCOME MEASURES: 6M RCT: Between-group differences in lumbar spine (LS) aBMD (percent change from baseline), 3M BFR, and hypercalcemia. Open-label extension: Within-group change in LS aBMD over 12M and 24M. Secondary outcomes included aBMD change at other sites and relationship between BTMs, BFR, and changes in aBMD. FINDINGS: Over 6M, LS aBMD increased by 5.5% (95% CI: 3.83, 7.19) in teriparatide and 1.5% (95% CI: -0.73, 3.83) in placebo (P = 0.007). There were increases in 3M BTMs, and BFR (cancellous and endocortical BFR: between-groups P = 0.004). Over 24M, teriparatide increased LS aBMD by 13.2% (95% CI: 10.3, 16.2), total hip by 5.2% (95% CI: 3.7, 6.7) and femoral neck by 5.0% (95% CI: 3.2, 6.7; all P ≤ 0.001). Serum N-terminal propeptides of procollagen type 1 (P1NP) and 3M endocortical BFR were moderately associated with LS aBMD response. Teriparatide was well-tolerated. CONCLUSIONS: Teriparatide increased BFR and formation markers and was associated with marked aBMD improvements in most premenopausal women (82%) with IOP.


Subject(s)
Bone Density Conservation Agents/administration & dosage , Bone Density/drug effects , Bone Remodeling/drug effects , Osteoporosis/drug therapy , Teriparatide/administration & dosage , Absorptiometry, Photon , Adult , Female , Humans , Osteoporosis/metabolism , Premenopause/metabolism , Treatment Outcome
14.
Bone ; 136: 115373, 2020 07.
Article in English | MEDLINE | ID: mdl-32330694

ABSTRACT

Teriparatide (TPTD) reduces risk of both vertebral and nonvertebral fracture, but increases bone mineral density (BMD) much more at the spine than the hip. TPTD and mechanical loading may have a synergistic anabolic effect on BMD, which may help explain these site-specific differences. Under normal daily activity, the femoral neck (FN) is under bending, placing one side under tension and the other under compression. We sought to further understand the relationship between mechanical loading and TPTD at the hip by investigating the effect of tensile versus compressive loading on TPTD stimulated bone formation indices in the human FN. Thirty-eight patients receiving total hip replacements for osteoarthritis were randomized to receive placebo (PBO) or TPTD for a mean treatment duration of 6 weeks prior to surgery, and double tetracycline labeling was administered to allow assessment of bone formation. The FN was harvested during surgery and analyzed for dynamic bone formation indices in the compressive and tensile regions of the endocortical and periosteal envelopes. Regression models relating outcome measures to patient characteristics including sex, age, body weight, and FN geometry were also analyzed. Overall, bone formation was higher with TPTD versus placebo on the endocortical surface, but not the periosteal surface. The level of bone formation in both TPTD and placebo groups was greater on the tensile endocortical surface and the compressive periosteal surface. There was a trend toward decreased endocortical eroded surface with TPTD in the compressive but not the tensile region. Patient age and sex explained the greatest variability in endocortical bone formation, and patient body mass and sex explained the greatest variability in periosteal bone formation. Our data represent the first dynamic comparison of teriparatide treatment under two loading modalities in human FN samples. Future work could determine whether specific hip loading intervention could amplify the benefits of teriparatide on the hip in clinical settings.


Subject(s)
Bone Density Conservation Agents , Teriparatide , Bone Density , Bone Density Conservation Agents/therapeutic use , Femur Neck , Humans , Osteogenesis , Teriparatide/pharmacology , Teriparatide/therapeutic use
15.
Bone Rep ; 12: 100253, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32215284

ABSTRACT

The influence of treatment with alendronate (ALN), teriparatide (TPTD) or concurrent treatment with both on the human bone matrix mineralization has not yet been fully elucidated. For this purpose we analyzed quadruple fluorochrome labelled transiliac bone biopsy samples (n = 66) from postmenopausal osteoporotic women with prior and ongoing ALN (ALN-Rx arm) or without ALN (Rx-Naïve arm) after 7 months treatment with cyclic or daily TPTD or without TPTD using quantitative backscattered electron imaging and confocal scanning laser microscopy. Additionally to the bone mineralization density distribution (BMDD) of entire cancellous and cortical compartments, we measured the mineralization kinetics, i.e. the calcium concentration between the younger (Ca_DL2) and older double labels (Ca_DL1), and in interstitial bone (Ca_int) in a subset of the biopsy cohort. We found the BMDD from the patients with prior and ongoing ALN generally shifted to higher calcium concentrations compared to those without ALN (average degree of mineralization in cancellous bone Cn.CaMean + 3.1%, p<0.001). The typical BMDD changes expected by cyclic or daily TPTD treatment due to the increased bone turnover/formation, e.g. an increase in low mineralized bone area were not observed. Additionally, we found no influence of treatment with ALN or TPTD or combination thereof on Ca_DL2, Ca_DL1, or Ca_int. Pooling the information from all groups, Ca_DL1 was +5.9% (p<0.001) higher compared to Ca_DL2, corresponding to a mineralization rate of 0.18 wt% Ca per week during the early secondary mineralization process. Our data suggest that the patients in the ALN-Rx arm had more highly mineralized bone matrix than those without ALN due to their lower bone turnover. The reason for the unexpected BMDD findings in the TPTD treated remain unknown and cannot be attributed to altered mineralization kinetics as no differences in the time course of early secondary mineralization were observed between the treatment groups.

16.
J Bone Miner Res ; 35(7): 1282-1288, 2020 07.
Article in English | MEDLINE | ID: mdl-32163613

ABSTRACT

Denosumab is associated with continued gains in hip and spine BMD with up to 10 years of treatment in postmenopausal women with osteoporosis. Despite potent inhibition of bone remodeling, findings in nonhuman primates suggest modeling-based bone formation (MBBF) may persist during denosumab treatment. This study assessed whether MBBF in the femoral neck (FN) is preserved in the context of inhibited remodeling in subjects receiving denosumab. This open-label study enrolled postmenopausal women with osteoporosis who had received two or more doses of denosumab (60 mg subcutaneously every 6 months [Q6M]) per standard of care and were planning elective total hip replacement (THR) owing to osteoarthritis of the hip. Transverse sections of the FN were obtained after THR and analyzed histomorphometrically. MBBF, based on fluorochrome labeling and presence of smooth cement lines, was evaluated in cancellous, endocortical, and periosteal envelopes of the FN. Histomorphometric parameters were used to assess MBBF and remodeling-based bone formation (RBBF) in denosumab-treated subjects (n = 4; mean age = 73.5 years; range, 70 to 78 years) and historical female controls (n = 11; mean age = 67.8 years; range, 62 to 80 years) obtained from the placebo group of a prior study and not treated with denosumab. All analyses were descriptive. All subjects in both groups exhibited MBBF in the periosteal envelope; in cancellous and endocortical envelopes, all denosumab-treated subjects and 81.8% of controls showed evidence of MBBF. Compared with controls, denosumab-treated subjects showed 9.4-fold and 2.0-fold higher mean values of MBBF in cancellous and endocortical envelopes, respectively, whereas RBBF mean values were 5.0-fold and 5.3-fold lower. In the periosteal envelope, MBBF and RBBF rates were similar between subjects and controls. These results demonstrate the occurrence of MBBF in the human FN and suggest that denosumab preserves MBBF while inhibiting remodeling, which may contribute to the observed continued gains in BMD over time after remodeling is maximally inhibited. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Subject(s)
Bone Density Conservation Agents , Denosumab , Femur Neck , Osteoporosis, Postmenopausal , Bone Density , Bone Density Conservation Agents/therapeutic use , Bone Remodeling , Denosumab/therapeutic use , Female , Femur Neck/diagnostic imaging , Femur Neck/drug effects , Femur Neck/physiology , Humans , Osteogenesis , Osteoporosis, Postmenopausal/drug therapy
17.
J Bone Miner Res ; 34(9): 1552-1561, 2019 09.
Article in English | MEDLINE | ID: mdl-31348548

ABSTRACT

Pregnancy and lactation-associated osteoporosis (PLO) is a rare, severe, early form of osteoporosis in which young women present with fractures, usually multiple vertebral fractures, during late pregnancy or lactation. In studies of idiopathic osteoporosis (IOP) in premenopausal women, we enrolled 78 women with low-trauma fractures and 40 healthy controls, all with normal menses and no secondary cause of bone loss. In 15 of the affected women, the PLO subgroup, fractures had occurred during late pregnancy or lactation. We hypothesized that clinical, bone structural, and metabolic characteristics would differ between women with PLO and those with (non-PLO) IOP and controls. All were evaluated > 12 months postpartum, when structural and remodeling characteristics would be expected to reflect baseline premenopausal status rather than transient postpartum changes. As previously reported, affected subjects (PLO and IOP) had BMD and microarchitectural deficiencies compared to controls. Women with PLO did not differ from those with IOP in terms of age, BMI, body fat, menarcheal age, parity, or age at first pregnancy. However, women with PLO had a more severe clinical presentation than those with IOP: more fractures (5.5 ± 3.3 versus 2.6 ± 2.1; p = 0.005); more vertebral fractures (80% versus 17%; p < 0.001); and higher prevalence of multiple fractures. BMD deficits were more profound and cortical width tended to be lower in PLO. PLO subjects also had significantly lower tissue-level mineral apposition rate and bone formation rates (0.005 ± 0.005 versus 0.011 ± 0.010 mm2 /mm/year; p = 0.006), as well as lower serum P1NP (33 ± 12 versus 44 ± 18 µg/L; p = 0.02) and CTX (257 ± 102 versus 355 ± 193 pg/mL; p = 0.01) than IOP. The finding that women with PLO have a low bone remodeling state assessed more than a year postpartum increases our understanding of the pathogenic mechanism of PLO. We conclude that women with PLO may have underlying osteoblast functional deficits which could affect their therapeutic response to osteoanabolic medications. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Bone Remodeling/physiology , Bone and Bones/physiopathology , Lactation , Osteoporosis/physiopathology , Absorptiometry, Photon , Adolescent , Adult , Biomarkers/blood , Bone Density/physiology , Bone and Bones/pathology , Cell Count , Female , Humans , Middle Aged , Osteoblasts/pathology , Osteoporosis/blood , Osteoporotic Fractures/blood , Osteoporotic Fractures/physiopathology , Pregnancy , Reproduction , Young Adult
18.
J Bone Miner Res ; 34(4): 626-631, 2019 04.
Article in English | MEDLINE | ID: mdl-30601581

ABSTRACT

Denosumab, a RANKL inhibitor, reduced the risk of vertebral, hip, and nonvertebral fractures in the Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) trial of postmenopausal women with osteoporosis compared with placebo. Previous bone histomorphometric analysis in FREEDOM showed decreased bone resorption and turnover in cancellous bone after 2 and 3 years. The purpose of the present study was to evaluate the effects of denosumab compared with placebo in the cortical compartment from transiliac bone biopsies obtained during FREEDOM. A total of 112 specimens were evaluable for cortical histomorphometry, including 67 obtained at month 24 (37 placebo, 30 denosumab) and 45 at month 36 (25 placebo, 20 denosumab). Eroded surface, osteoclast surface, erosion depth, and wall thickness were measured on the endocortical surface. Cortical thickness and cortical porosity were also measured. Dynamic parameters of bone formation were assessed for endocortical, periosteal, and intracortical envelopes. Endocortical osteoclast surface, eroded surface, and mean and maximum erosion depth were significantly lower in the denosumab group versus placebo at months 24 and 36 (p < 0.0001 to p = 0.04). Endocortical wall thickness and intracortical measures (cortical porosity and cortical thickness) were not different between the two groups. Dynamic parameters were low with tetracycline labels in cortical bone observed in 13 (43%) and 10 (50%) of denosumab biopsies at months 24 and 36, respectively, reflecting a marked decrease in bone turnover. In conclusion, our data reveal the mechanism of action of denosumab on cortical bone: inhibition of osteoclastic resorption and reduced activation of new remodeling sites. In addition, reduced endocortical erosion depth with no change of wall thickness may contribute to increased bone strength by reducing the bone loss and fragility associated with deep resorption cavities and may likely contribute to the greater BMD gain with denosumab than with other antiresorptive agents. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Subject(s)
Bone Remodeling/drug effects , Cortical Bone , Denosumab/administration & dosage , Ilium , Osteoclasts , Osteoporosis , Osteoporotic Fractures , Aged , Aged, 80 and over , Cortical Bone/metabolism , Cortical Bone/pathology , Double-Blind Method , Female , Humans , Ilium/metabolism , Ilium/pathology , Middle Aged , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoporotic Fractures/metabolism , Osteoporotic Fractures/pathology , Osteoporotic Fractures/prevention & control
19.
Bone ; 120: 246-253, 2019 03.
Article in English | MEDLINE | ID: mdl-30355512

ABSTRACT

PURPOSE: We evaluated if equivalent doses of TPTD given cyclically over 4-years could increase BMD >2-years of daily TPTD in 2 cohorts of women; previously untreated (Rx-Naïve) and women previously treated with ALN (ALN-Rx). METHODS: In Rx-Naïve, women were randomized to daily TPTD for 24 months (Daily; n = 23) or cyclic TPTD for 48 months (3 months on, 3 months off; Cyclic; n = 25). In ALN-Rx, women were randomized to continued ALN plus daily TPTD for 24 months, followed by ALN alone for 24 months (Daily; n = 21) or TPTD for 48 months (3 months on, 3 months off) while ALN was continued (Cyclic; n = 20). BMD (DXA) was measured at spine (LS), total hip (TH) and femoral neck (FN). The primary analysis compared 4 years of cyclic therapy to 2 years of daily therapy in RX-naïve and ALN-RX cohorts. RESULTS: In Rx-Naïve, BMD changes at 24 months after Daily TPTD vs. 48 months after Cyclic TPTD were: LS 8.6% vs. 6.9%; TH 2.5% vs. 2.6%, and FN 1.6% vs. 2.2%. None of the BMD changes differed significantly between groups but all changes were significant over time within each group (p < 0.01 except for FN where p = 0.17 Daily; p = 0.09 Cyclic). In ALN-Rx, BMD changes at 24 months after Daily TPTD vs. 48 months after Cyclic TPTD were: LS 7.5% vs. 7.2%; TH 3.8% vs. 4.1%, and FN 3.2% vs. 2.5%. There were no differences between groups but all changes were significant within each group (p < 0.01). CONCLUSION: The same cumulative dose of TPTD given cyclically for 4-years, does not increase BMD more than standard daily TPTD over 2-years in either Rx-Naïve or ALN-Rx women. TRIAL REGISTRATION: NCT00668941.


Subject(s)
Alendronate/administration & dosage , Teriparatide/administration & dosage , Absorptiometry, Photon , Alendronate/adverse effects , Alendronate/pharmacology , Alendronate/therapeutic use , Biomarkers/metabolism , Bone Density/drug effects , Bone Remodeling/drug effects , Cohort Studies , Drug Administration Schedule , Drug Therapy, Combination , Female , Fractures, Bone/drug therapy , Humans , Middle Aged , Teriparatide/adverse effects , Teriparatide/pharmacology , Teriparatide/therapeutic use
20.
J Bone Miner Res ; 33(11): 1931-1939, 2018 11.
Article in English | MEDLINE | ID: mdl-29972871

ABSTRACT

Hypoparathyroidism is a rare disorder that is associated with abnormal bone properties. Recombinant human parathyroid hormone (1-84) [rhPTH(1-84)] in short-term studies has beneficial skeletal effects. Although rhPTH(1-84) will likely be used indefinitely, long-term effects on skeletal microstructure are unknown. We therefore studied histomorphometric changes with transiliac crest bone biopsies before and after 8.3 ± 1 years of rhPTH(1-84) in 13 hypoparathyroid subjects compared with 45 controls. Before institution of rhPTH(1-84), skeletal remodeling indices were markedly suppressed. With long-term treatment, indices of bone remodeling increased. Mineralizing surface increased by 26-fold (0.3 ± 1 to 7.9 ± 7%, p = 0.003), bone formation rate increased by 15-fold (0.003 ± 0.01 to 0.047 ± 0.05 µm2 /µm/day, p = 0.007), osteoid width doubled (1.9 ± 1 to 4.3 ± 1 lamellae, p = 0.017), and osteoid surface tripled (3.3 ± 3 to 10.8 ± 6%, p = 0.011). Bone resorption as measured by eroded surface increased (4.6 ± 2 to 7.5 ± 3%, p = 0.021). Structural changes demonstrated intratrabecular tunneling, with increases in cancellous bone volume (19.6 ± 5 to 29.1 ± 11%, p = 0.017) and trabecular number (1.8 ± 1 to 2.5 ± 1 #/mm, p = 0.025). Cortical porosity tended to increase (6.3 ± 5 to 9.5 ± 3%, p = 0.07). Mineralizing surface, osteoid surface, and eroded surface surpassed control levels, as did cancellous bone volume, trabecular number, and cortical porosity. These data, the first to reflect such long exposure of any PTH for any disease, illustrate that PTH establishes and maintains a new skeletal state for at least 8 years in hypoparathyroidism. © 2018 American Society for Bone and Mineral Research.


Subject(s)
Bone and Bones/pathology , Hypoparathyroidism/drug therapy , Parathyroid Hormone/administration & dosage , Parathyroid Hormone/therapeutic use , Recombinant Proteins/administration & dosage , Recombinant Proteins/therapeutic use , Adult , Aged , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Parathyroid Hormone/pharmacology , Recombinant Proteins/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...