Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(1): 435-459, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36534051

ABSTRACT

Microtubule (MT)-stabilizing 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) hold promise as candidate therapeutics for Alzheimer's disease (AD) and other neurodegenerative conditions. However, depending on the choice of substituents around the TPD core, these compounds can elicit markedly different cellular phenotypes that likely arise from the interaction of TPD congeners with either one or two spatially distinct binding sites within tubulin heterodimers (i.e., the seventh site and the vinca site). In the present study, we report the design, synthesis, and evaluation of a series of new TPD congeners, as well as matched molecular pair analyses and computational studies, that further elucidate the structure-activity relationships of MT-active TPDs. These studies led to the identification of novel MT-normalizing TPD candidates that exhibit favorable ADME-PK, including brain penetration and oral bioavailability, as well as brain pharmacodynamic activity.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Pyrimidines/chemistry , Microtubules/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Tubulin/metabolism , Structure-Activity Relationship
2.
Eur J Med Chem ; 229: 114054, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34959172

ABSTRACT

The human kinome plays a crucial role in several pathways. Its dysregulation has been linked to diverse central nervous system (CNS)-related disorders with a drastic impact on the aging population. Among them, tauopathies, such as Alzheimer's Disease (AD) and Frontotemporal Lobar degeneration (FTLD-tau), are neurodegenerative disorders pathologically defined by the presence of hyperphosphorylated tau-positive intracellular inclusions known as neurofibrillary tangles (NFTs). Compelling evidence has reported the great potential of the simultaneous modulation of multiple protein kinases (PKs) involved in abnormal tau phosphorylation through a concerted pharmacological approach to achieve a superior therapeutic effect relative to classic "one target, one drug" approaches. Here, we report on the identification and characterization of ARN25068 (4), a low nanomolar and well-balanced dual GSK-3ß and FYN inhibitor, which also shows inhibitory activity against DYRK1A, an emerging target in AD and tauopathies. Computational and X-Ray studies highlight compound 4's typical H-bonding pattern of ATP-competitive inhibitors at the binding sites of all three PKs. In a tau phosphorylation assay on Tau0N4R-TM-tGFP U2OS cell line, 4 reduces the extent of tau phosphorylation, promoting tau-stabilized microtubule bundles. In conclusion, this compound emerges as a promising prototype for further SAR explorations to develop potent and well-balanced triple GSK-3ß/FYN/DYRK1A inhibitors to tackle tau hyperphosphorylation.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Neuroprotective Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-fyn/antagonists & inhibitors , Tauopathies/drug therapy , Binding Sites , Drug Evaluation, Preclinical , Humans , Microtubules/metabolism , Models, Molecular , Neurofibrillary Tangles/metabolism , Neuroprotective Agents/pharmacology , Phosphorylation , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , tau Proteins/metabolism , Dyrk Kinases
3.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34445804

ABSTRACT

Protein kinases (PKs) have been recognized as central nervous system (CNS)-disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK-3ß, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near-decade from 2010 to 2020, several computer-assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK-3ß, FYN, and DYRK1A inhibitors as disease-modifying agents. In this review, we described both structural and functional aspects of GSK-3ß, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi-target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood-brain barrier (BBB) permeability and drug-like properties.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Neurodegenerative Diseases/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Signal Transduction/physiology , Animals , Humans
4.
Org Lett ; 20(23): 7699-7702, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30422665

ABSTRACT

A unified protocol for the construction of 3-(2-bromoethyl)benzofurans and 2-(benzofuran-3-yl)ethylamines from bis[(trimethylsilyl)oxy]cyclobutene has been developed. This mild and facile strategy was applied for the synthesis of a series of 5-HT serotonin receptor agonists, underlining its potential for the syntheses of bioactive compounds and natural products.

SELECTION OF CITATIONS
SEARCH DETAIL
...