Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 3(20): 2920-2933, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31648314

ABSTRACT

Chronic lymphocytic leukemia (CLL), the most common adulthood leukemia in Western countries, is a very heterogeneous disease characterized by a peripheral accumulation of abnormal CD5+ B lymphocytes in the immune system. Despite new therapeutic developments, there remains an unmet medical need for CLL. Here, we demonstrate that the use of N-methylated thrombospondin-1 (TSP-1)-derived peptides is an efficient way to kill the malignant CLL cells, including those from high-risk individuals with poor clinical prognosis, del11q, del17p, 2p gain, or complex karyotype. PKT16, our hit N-methylated peptide, triggers the elimination of the leukemic cells, sparing the nontumor cells, including the hematopoietic precursors, and reduces the in vivo tumor burden of a CLL-xenograft mice model. A complementary analysis underscores the improved cytotoxic efficiency of PKT16 compared with the previously described TSP-1-derived probes, such as PKHB1. PKT16 elicits an original caspase-independent programmed necrotic mode of cell death, different from necroptosis or ferroptosis, implicating an intracellular Ca2+ deregulation that provokes mitochondrial damage, cell cycle arrest, and the specific death of the malignant CLL cells. The activation of the Gαi proteins and the subsequent drop of cyclic adenosine monophosphate levels and protein kinase A activity regulate this cytotoxic cascade. Remarkably, PKT16 induces the molecular hallmarks of immunogenic cell death, as defined by the calreticulin plasma membrane exposure and the release of adenosine triphosphate and high-mobility group box 1 protein from the dying CLL cells. Thus, PKT16 appears to be able to stimulate an anticancer in vivo immune response. Collectively, our results pave the way toward the development of an efficient strategy against CLL.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Peptides/pharmacology , Thrombospondin 1/chemistry , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Models, Molecular , Molecular Mimicry , Peptides/chemistry , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
2.
J Med Chem ; 62(17): 7656-7668, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31403795

ABSTRACT

In order to optimize the potency of the first serum-stable peptide agonist of CD47 (PKHB1) in triggering regulated cell death of cancer cells, we designed a maturation process aimed to mimic the trimeric structure of the thrombospondin-1/CD47 binding epitope. For that purpose, an N-methylation scan of the PKHB1 sequence was realized to prevent peptide aggregation. Structural and pharmacological analyses were conducted in order to assess the conformational impact of these chemical modifications on the backbone structure and the biological activity. This structure-activity relationship study led to the discovery of a highly soluble N-methylated peptide that we termed PKT16. Afterward, this monomer was used for the design of a homotrimeric peptide mimic that we termed [PKT16]3, which proved to be 10-fold more potent than its monomeric counterpart. A pharmacological evaluation of [PKT16]3 in inducing cell death of adherent (A549) and nonadherent (MEC-1) cancer cell lines was also performed.


Subject(s)
Drug Design , Peptides/chemistry , Peptides/pharmacology , Thrombospondin 1/chemistry , A549 Cells , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Peptides/chemical synthesis , Protein Conformation , Protein Stability , Structure-Activity Relationship , Thrombospondin 1/pharmacology
3.
Cancer Sci ; 110(1): 256-268, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30460757

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis derived from its genetic heterogeneity, which translates to a high chemoresistance. Recently, our workgroup designed thrombospondin-1-derived CD47 agonist peptides and demonstrated their ability to induce cell death in chronic lymphocytic leukemia. Encouraged by these promising results, we evaluated cell death induced by PKHB1 (the first-described serum-stable CD47-agonist peptide) on CEM and MOLT-4 human cell lines (T-ALL) and on one T-murine tumor lymphoblast cell-line (L5178Y-R), also assessing caspase and calcium dependency and mitochondrial membrane potential. Additionally, we evaluated selectivity for cancer cell lines by analyzing cell death and viability of human and murine non-tumor cells after CD47 activation. In vivo, we determined that PKHB1-treatment in mice bearing the L5178Y-R cell line increased leukocyte cell count in peripheral blood and lymphoid organs while recruiting leukocytes to the tumor site. To analyze whether CD47 activation induced immunogenic cell death (ICD), we evaluated damage-associated molecular patterns (DAMP) exposure (calreticulin, CRT) and release (ATP, heat shock proteins 70 and 90, high-mobility group box 1, CRT). Furthermore, we gave prophylactic antitumor vaccination, determining immunological memory. Our data indicate that PKHB1 induces caspase-independent and calcium-dependent cell death in leukemic cells while sparing non-tumor murine and human cells. Moreover, our results show that PKHB1 can induce ICD in leukemic cells as it induces CRT exposure and DAMP release in vitro, and prophylactic vaccinations inhibit tumor establishment in vivo. Together, our results improve the knowledge of CD47 agonist peptides potential as therapeutic tools to treat leukemia.


Subject(s)
Apoptosis/drug effects , CD47 Antigen/agonists , Membrane Potential, Mitochondrial/drug effects , Peptides/pharmacology , Animals , CD47 Antigen/metabolism , Calcium/metabolism , Cell Death/drug effects , Cell Line, Tumor , Female , Humans , Kaplan-Meier Estimate , Leukemia, Experimental/drug therapy , Leukemia, Experimental/metabolism , Leukemia, Experimental/pathology , Mice, Inbred BALB C , Peptides/chemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Thrombospondin 1/chemistry
4.
Immunity ; 46(2): 261-272, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228282

ABSTRACT

Variants of the CFH gene, encoding complement factor H (CFH), show strong association with age-related macular degeneration (AMD), a major cause of blindness. Here, we used murine models of AMD to examine the contribution of CFH to disease etiology. Cfh deletion protected the mice from the pathogenic subretinal accumulation of mononuclear phagocytes (MP) that characterize AMD and showed accelerated resolution of inflammation. MP persistence arose secondary to binding of CFH to CD11b, which obstructed the homeostatic elimination of MPs from the subretinal space mediated by thrombospsondin-1 (TSP-1) activation of CD47. The AMD-associated CFH(H402) variant markedly increased this inhibitory effect on microglial cells, supporting a causal link to disease etiology. This mechanism is not restricted to the eye, as similar results were observed in a model of acute sterile peritonitis. Pharmacological activation of CD47 accelerated resolution of both subretinal and peritoneal inflammation, with implications for the treatment of chronic inflammatory disease.


Subject(s)
CD47 Antigen/immunology , Complement Factor H/immunology , Inflammation/immunology , Macular Degeneration/immunology , Animals , Complement Factor H/genetics , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunohistochemistry , Inflammation/genetics , Macular Degeneration/genetics , Mice , Mice, Knockout , Peritonitis/genetics , Peritonitis/immunology , Polymorphism, Single Nucleotide
5.
J Med Chem ; 59(18): 8412-21, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27526615

ABSTRACT

Thrombospondin-1 (TSP-1) is a glycoprotein considered as a key actor within the tumor microenvironment. Its binding to CD47, a cell surface receptor, triggers programmed cell death. Previous studies allowed the identification of 4N1K decapeptide derived from the TSP-1/CD47 binding epitope. Here, we demonstrate that this peptide is able to induce selective apoptosis of various cancer cell lines while sparing normal cells. A structure-activity relationship study led to the design of the first serum stable TSP-1 mimetic agonist peptide able to trigger selective programmed cell death (PCD) of at least lung, breast, and colorectal cancer cells. Altogether, these results will be of valuable interest for further investigation in the design of potent CD47 agonist peptides, opening new perspectives for the development of original anticancer therapies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , Thrombospondin 1/agonists , Amino Acid Sequence , Apoptosis/drug effects , Cell Line, Tumor , Humans , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Structure-Activity Relationship , Thrombospondin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...