Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 711: 134666, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31812380

ABSTRACT

Air pollution and particulate matter (PM) are classified as carcinogenic to humans. Pollutants evidence for public health concern include coarse (PM10) and fine (PM2.5) particles. However, ultrafine particles (PM0.1) are assumed to be more toxic than larger particles, but data are still needed to better understand their mechanism of action. In this context, the aim of our work was to investigate the in vitro and in vivo genotoxic potential of fine (PM2.5-018) and quasi ultra-fine (PM0.18) particles from an urban-industrial area (Dunkirk, France) by using comet, micronucleus and/or gene mutation assays. In vitro assessment was performed with 2 lung immortalized cell lines (BEAS-2B and NCI-H292) and primary normal human bronchial epithelial cells (NHBE) grown at the air-liquid interface or in submerged conditions (5 µg PM/cm2). For in vivo assessment, tests were performed after acute (24 h, 100 µg PM/animal), subacute (1 month, 10 µg PM/animal) and subchronic (3 months, 10 µg PM/animal) intranasal exposure of BALB/c mice. In vitro, our results show that PM2.5-018 and PM0.18 induced primary DNA damage but no chromosomal aberrations in immortalized cells. Negative results were noted in primary cells for both endpoints. In vivo assays revealed that PM2.5-018 and PM0.18 induced no significant increases in DNA primary damage, chromosomal aberrations or gene mutations, whatever the duration of exposure. This investigation provides initial answers regarding the in vitro and in vivo genotoxic mode of action of PM2.5-018 and PM0.18 at moderate doses and highlights the need to develop standardized specific methodologies for assessing the genotoxicity of PM. Moreover, other mechanisms possibly implicated in pulmonary carcinogenesis, e.g. epigenetics, should be investigated.


Subject(s)
Air Pollution , Air Pollutants , Animals , DNA Damage , France , Lung , Mice , Mice, Inbred BALB C , Particle Size , Particulate Matter
2.
Environ Res ; 176: 108538, 2019 09.
Article in English | MEDLINE | ID: mdl-31344532

ABSTRACT

The knowledge of the underlying mechanisms by which particulate matter (PM) exerts its health effects is still incomplete since it may trigger various symptoms as some persons may be more susceptible than others. Detailed studies realized in more relevant in vitro models are highly needed. Healthy normal human bronchial epithelial (NHBE), asthma-diseased human bronchial epithelial (DHBE), and COPD-DHBE cells, differentiated at the air-liquid interface, were acutely or repeatedly exposed to fine (i.e., PM2.5-0.18, also called FP) and quasi-ultrafine (i.e., PM0.18, also called UFP) particles. Immunofluorescence labelling of pan-cytokeratin, MUC5AC, and ZO-1 confirmed their specific cell-types. Baselines of the inflammatory mediators secreted by all the cells were quite similar. Slight changes of TNFα, IL-1ß, IL-6, IL-8, GM-CSF, MCP-1, and/or TGFα, and of H3K9 histone acetylation supported a higher inflammatory response of asthma- and especially COPD-DHBE cells, after exposure to FP and especially UFP. At baseline, 35 differentially expressed genes (DEG) in asthma-DHBE, and 23 DEG in COPD-DHBE, compared to NHBE cells, were reported. They were involved in biological processes implicated in the development of asthma and COPD diseases, such as cellular process (e.g., PLA2G4C, NLRP1, S100A5, MUC1), biological regulation (e.g., CCNE1), developmental process (e.g., WNT10B), and cell component organization and synthesis (e.g., KRT34, COL6A1, COL6A2). In all the FP or UFP-exposed cell models, DEG were also functionally annotated to the chemical metabolic process (e.g., CYP1A1, CYP1B1, CYP1A2) and inflammatory response (e.g., EREG). Another DEG, FGF-1, was only down-regulated in asthma and specially COPD-DHBE cells repeatedly exposed. While RAB37 could help to counteract the down-regulation of FGF-1 in asthma-DHBE cells, the deregulation of FGR, WNT7B, VIPR1, and PPARGC1A could dramatically contribute to make it worse in COPD-DHBE cells. Taken together, these data contributed to support the highest effects of UFP versus FP and highest sensitivity of asthma- and notably COPD-DHBE versus NHBE cells.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Bronchi , Epithelial Cells , Humans , Particle Size , Phenotype , S100 Proteins
3.
Ecotoxicol Environ Saf ; 113: 499-505, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25576736

ABSTRACT

The effects of iron nanoparticles on bryophytes (Physcomitrella patens) were studied following foliar exposure. We used iron nanoparticles (Fe-NP) representative of industrial emissions from the metallurgical industries. After a characterization of iron nanoparticles and the validation of nanoparticle internalization in cells, the effects (cytotoxicity, oxidative stress, lipid peroxidation of membrane) of iron nanoparticles were determined through the axenic culturing of Physcomitrella patens exposed at five different concentrations (5 ng, 50 ng, 500 ng, 5 µg and 50 µg per plant). Following exposure, the plant health, measured as ATP concentrations, was not impacted. Moreover, we studied oxidative stress in three ways: through the measure of reactive oxygen species (ROS) production, through malondialdehyde (MDA) production and also through glutathione regulation. At concentrations tested over a short period, the level of ROS, MDA and glutathione were not significantly disturbed.


Subject(s)
Bryopsida/drug effects , Iron/toxicity , Nanoparticles/toxicity , Oxidative Stress/drug effects , Adenosine Triphosphate/metabolism , Bryophyta/metabolism , Bryopsida/metabolism , Germ Cells, Plant/drug effects , Glutathione/metabolism , Iron/chemistry , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Nanoparticles/chemistry , Plant Leaves/drug effects , Plants/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
4.
Sci Total Environ ; 372(2-3): 372-81, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17161447

ABSTRACT

The purpose of this study was to investigate, under standard conditions, the bioaccumulation of zinc and cadmium in Arrhenatherum elatius, a perennial grass with a high biomass production. Nine populations of three different origins were tested: three metallicolous populations (mpop); three non-metallicolous populations (nmpop) and three populations developing on soils moderately metal polluted (medpop). We have found that bioaccumulation differs among these populations, with nmpop accumulating significantly more zinc (p<0.0001) and cadmium (p<0.0001) than mpop. Indeed, we have observed a concentration of 325 mg kg(-1) of zinc and 52 mg kg(-1) of cadmium in A. elatius shoots from mpop, whereas in nmpop, the concentration reached on average 524 mg kg(-1) zinc and 83 mg kg(-1) cadmium. In the same way, medpop accumulated as much zinc but more cadmium than nmpop. Moreover, the standard deviation of medpop was larger than the one for mpop and nmpop. Indeed, some A. elatius samples from medpop presented a high metal content whereas, others presented low concentrations in their shoots (ranging from 60 to 210 mg kg(-1) cadmium). Hence, these medpop exhibited a large variability among and within populations in accumulating zinc and cadmium in their shoots. Based on these results, the possibility of selecting A. elatius plants with the best accumulating capacity from medpop was proposed. We concluded that if the accumulation capacity is genetically controlled in A. elatius, this species fulfils this necessary condition for efficiently increasing species bioaccumulation by crossbreeding A. elatius plants with the higher accumulation capacity.


Subject(s)
Cadmium/metabolism , Poaceae/metabolism , Soil Pollutants/metabolism , Zinc/metabolism , Cadmium/analysis , Environmental Restoration and Remediation/methods , France , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...