Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35567124

ABSTRACT

The study aimed to determine the changes in phenolic compounds content in lettuce (Lactuca sativa L. cv. Little Gem) depending on the preharvest short-term daytime or nighttime supplemental light-emitting diodes (LEDs) to high-pressure sodium lamps (HPS) lighting in a greenhouse during autumn and spring cultivation. Plants were grown in a greenhouse under HPS supplemented with 400 nm, 455 nm, 530 nm, 455 + 530 nm or 660 nm LEDs light for 4 h five days before harvest. Two experiments (EXP) were performed: EXP1-HPS, and LEDs treatment during daytime 6 PM-10 PM, and EXP2-LEDs treatment at nighttime during 10 AM-2 PM. LEDs' photosynthetic photon flux density (PPFD) was 50 and HPS-90 ± 10 µmol m-2 s-1. The most pronounced positive effect on total phenolic compounds revealed supplemental 400 and 455 + 530 nm LEDs lighting, except its application during the daytime at spring cultivation, when all supplemental LEDs light had no impact on phenolics content variation. Supplemental 400 nm LEDs applied in the daytime increased chlorogenic acid during spring and chicoric acid during autumn cultivation. 400 nm LEDs used in nighttime enhanced chlorogenic acid accumulation and rutin during autumn. Chicoric and chlorogenic acid significantly increased under supplemental 455 + 530 nm LEDs applied at daytime in autumn and used at nighttime-in spring. Supplemental LEDs application in the nighttime resulted in higher phenolic compounds content during spring cultivation and the daytime during autumn cultivation.

2.
Front Plant Sci ; 13: 1098048, 2022.
Article in English | MEDLINE | ID: mdl-36684802

ABSTRACT

Essential oils and extracts are investigated in sustainable plant protection area lately. Alternative antifungal substances are especially relevant for major economic-relevance pathogens, like Botrytis cinerea (causal agent of strawberry grey mold), control. However, the reaction of plants to alternative protection with plant-origin products is currently unknown. Induced stress in plants causes changes in antioxidant and photosynthetic systems. The aim of the research was to determine the defense response of strawberry plants under application of coriander seed products. In the first step of the research, we determined coriander seed (Coriandrum sativum), black seed (Nigella sativa) and peppermint leaf (Menta × piperita) products' antifungal activity against B. cinerea in vitro. Secondly, we continued evaluation of antifungal activity under controlled environment on strawberry plants of the most effective coriander seed products. Additionally, we evaluated the antioxidant and photosynthetic parameters in strawberries, to examine the response of plants. Antifungal activity on strawberries was determined based on grey mold incidence and severity after application of coriander products. Impact on photosynthetic system was examined measuring photosynthetic rate, transpiration rate, stomatal conductance, and intercellular to ambient CO2 concentration. Strawberry leaves were collected at the end of the experiment to analyze the antioxidant response. The highest antifungal activity both in vitro and on strawberries had coriander seed essential oil, which decreased grey mold severity. Coriander extract increased the photosynthetic capacity and antioxidant response of strawberry plants, however had negative effect on suppression of grey mold. In most cases, the essential oil activated antioxidant response of strawberry plants lower than extract. Our study results provide no direct impact of increased photosynthetic capacity values and antifungal effect after treatment with natural oils. The highest concentrations of coriander essential oil and extract potentially demonstrated a phytotoxic effect.

3.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361746

ABSTRACT

New agricultural strategies aim to reduce the use of pesticides due to their damage to the environment and humans, and the caused resistance to pathogens. Therefore, alternative sources of antifungal compounds from plants are under investigation lately. Extracts from plants have a wide composition of chemical compounds which may complicate the development of pathogen resistance. Botrytis cinerea, causing grey mould, is an important horticultural and ornamental pathogen, responsible for the relevant yield and quality losses. B. cinerea isolated from a different plant host may differ in the sensitivity to antifungal substances from plants. Assessing the importance of research covering a wide range of pathogens for the rapid development of biopesticides, this study aims to determine the sensitivity of the B. cinerea isolate complex (10 strains) to plant extracts, describe morphological changes caused by the extract treatment, and detect differences between the sensitivity of different plant host isolates. The results showed the highest sensitivity of the B. cinerea isolates complex to cinnamon extract, and the lowest to laurel extract. In contrast, laurel extract caused the most changes of morphological attributes in the isolates. Five B. cinerea isolates from plant hosts of raspberry, cabbage, apple, bell pepper, and rose were grouped statistically according to their sensitivity to laurel extract. Meanwhile, the bell pepper isolate separated from the isolate complex based on its sensitivity to clove extract, and the strawberry and apple isolates based on their sensitivity to cinnamon extract.


Subject(s)
Antifungal Agents/pharmacology , Biological Control Agents/pharmacology , Botrytis/drug effects , Cinnamomum zeylanicum/chemistry , Hyphae/drug effects , Plant Diseases/prevention & control , Antifungal Agents/isolation & purification , Biological Control Agents/isolation & purification , Botrytis/growth & development , Botrytis/isolation & purification , Brassica/microbiology , Capsicum/microbiology , Cinnamomum camphora/chemistry , Fragaria/microbiology , Humans , Hyphae/growth & development , Hyphae/isolation & purification , Malus/microbiology , Microbial Sensitivity Tests , Plant Diseases/microbiology , Plant Extracts/chemistry , Syzygium/chemistry , Vitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...