Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol Rep ; 12(6): 702-711, 2020 12.
Article in English | MEDLINE | ID: mdl-32902135

ABSTRACT

Resistance-Nodulation-Division (RND) efflux pumps are relevant determinants of Stenotrophomonas maltophilia multidrug resistance as they can extrude a broad range of antibiotics and compounds involved in virulence and physiological functions. S. maltophilia, an environmental bacterium, was shown to be associated with amoebae and able to multiply inside them. To explore whether S. maltophilia RND efflux pumps play a role when interacting with amoebae, we evaluated the effect of amoebal culture and co-culture supernatants on the growth of S. maltophilia and the expression of sme efflux pump genes. Acanthamoeba castellanii and Willaertia magna were used as amoebal models and strain S. maltophilia BurE1 as bacterial one. Our data showed that both bacterial growth and sme gene expression were not modified by amoebal culture supernatants. On the contrary, co-culture supernatants negatively impacted the growth of BurE1 and induced the expression of three out of eight efflux pump genes, i.e. smeE, smeN and smeZ. Finally, we evidenced the production of A. castellanii secondary metabolites, putatively belonging to the diterpene family, in the amoebal supernatant and in the co-culture supernatant of A. castellanii and BurE1. Whether these compounds act directly as substrates of the efflux pumps and/or inducers of the sme genes need further investigations.


Subject(s)
Amoeba/metabolism , Bacterial Proteins/genetics , Culture Media/metabolism , Membrane Transport Proteins/genetics , Stenotrophomonas maltophilia/growth & development , Stenotrophomonas maltophilia/metabolism , Amoeba/chemistry , Amoeba/growth & development , Bacterial Proteins/metabolism , Coculture Techniques , Culture Media/chemistry , Membrane Transport Proteins/metabolism , Secondary Metabolism , Stenotrophomonas maltophilia/genetics
2.
Int J Pharm ; 583: 119373, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32339629

ABSTRACT

For several years, the international context is deeply affected by the use of chemical and biological weapons. The use of CBRN (Chemical Biological Radiological Nuclear) threat agents from military stockpiles or biological civilian industry demonstrate the critical need to improve capabilities of decontamination for civilians and military. Physical decontamination systems that operate only by adsorption and displacement such as Fuller's Earth, have the drawback of not neutralizing hazardous agents, giving place to cross contaminations. Consequently, the development of a formulation based on metal oxide nanoparticles attracts considerable interest, since they offer physicochemical properties that allow them to both adsorb and degrade toxic compounds. Thus, the aim of this study is to found metal oxide nanoparticles with a versatile activity on both chemical and biological toxic agents. Therefore, several metal oxides such as MgO, TiO2, CeO2, ZnO and ZrO2 were characterized and their decontamination kinetics of less-toxic surrogate of VX, paraoxon, were studied in vitro. To determine the antimicrobial activity of these nanoparticles, simulants of biological terrorist threat were used by performing a 3-hours decontamination kinetics. This proof-of-concept study showed that MgO is the only one that exhibits both chemical and antibacterial actions but without sporicidal activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biological Warfare Agents , Chemical Warfare Agents/toxicity , Decontamination , Magnesium Oxide/pharmacology , Metal Nanoparticles , Paraoxon/toxicity , Anti-Bacterial Agents/chemistry , Bacteria/growth & development , Cerium/pharmacology , Chemical Warfare Agents/chemistry , Hydrolysis , Kinetics , Magnesium Oxide/chemistry , Models, Chemical , Paraoxon/chemistry , Proof of Concept Study , Titanium/pharmacology , Zinc Oxide/pharmacology , Zirconium/pharmacology
3.
Front Microbiol ; 9: 383, 2018.
Article in English | MEDLINE | ID: mdl-29559964

ABSTRACT

The Burkholderia cenocepacia epidemic ET12 lineage belongs to the genomovar IIIA including the reference strain J2315, a highly transmissible epidemic B. cenocepacia lineage. Members of this lineage are able to cause lung infections in immunocompromised and cystic fibrosis patients. In this study, we describe the genome of F01, an environmental B. cenocepacia strain isolated from soil in Burkina Faso that is, to our knowledge, the most closely related strain to this epidemic lineage. A comparative genomic analysis was performed on this new isolate, in association with five clinical and one environmental B. cenocepacia strains whose genomes were previously sequenced. Antibiotic resistances, virulence phenotype, and genomic contents were compared and discussed with an emphasis on virulent and antibiotic determinants. Surprisingly, no significant differences in antibiotic resistance and virulence were found between clinical and environmental strains, while the most important genomic differences were related to the number of prophages identified in their genomes. The ET12 lineage strains showed a noticeable greater number of prophages (partial or full-length), especially compared to the phylogenetically related environmental F01 strain (i.e., 5-6 and 3 prophages, respectively). Data obtained suggest possible involvements of prophages in the clinical success of opportunistic pathogens.

4.
PLoS One ; 13(2): e0192308, 2018.
Article in English | MEDLINE | ID: mdl-29401523

ABSTRACT

Stenotrophomonas maltophilia is found ubiquitously in the environment and is an important emerging nosocomial pathogen. S. maltophilia has been recently described as an Amoebae-Resistant Bacteria (ARB) that exists as part of the microbiome of various free-living amoebae (FLA) from waters. Co-culture approaches with Vermamoeba vermiformis demonstrated the ability of this bacterium to resist amoebal digestion. In the present study, we assessed the survival and growth of six environmental and one clinical S. maltophilia strains within two amoebal species: Acanthamoeba castellanii and Willaertia magna. We also evaluated bacterial virulence properties using the social amoeba Dictyostelium discoideum. A co-culture approach was carried out over 96 hours and the abundance of S. maltophilia cells was measured using quantitative PCR and culture approach. The presence of bacteria inside the amoeba was confirmed using confocal microscopy. Our results showed that some S. maltophilia strains were able to multiply within both amoebae and exhibited multiplication rates up to 17.5 and 1166 for A. castellanii and W. magna, respectively. In contrast, some strains were unable to multiply in either amoeba. Out of the six environmental S. maltophilia strains tested, one was found to be virulent. Surprisingly, this strain previously isolated from a soil amoeba, Micriamoeba, was unable to infect both amoebal species tested. We further performed an assay with a mutant strain of S. maltophilia BurA1 lacking the efflux pump ebyCAB gene and found the mutant to be more virulent and more efficient for intra-amoebal multiplication. Overall, the results obtained strongly indicated that free-living amoebae could be an important ecological niche for S. maltophilia.


Subject(s)
Amoeba/microbiology , Stenotrophomonas maltophilia/growth & development , Real-Time Polymerase Chain Reaction , Stenotrophomonas maltophilia/pathogenicity , Virulence
5.
Parasitol Res ; 116(11): 3151-3162, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28988383

ABSTRACT

Free-living amoebae (FLA) are ubiquitous protozoa found worldwide in the environment. They feed by phagocytosis on various microorganisms. However, some bacteria, i.e., amoebae-resistant bacteria (ARB) or bacterial endocytobionts, can resist phagocytosis and even multiply inside FLA. This study investigated the diversity of culturable FLA in various soils from agricultural and mining sites and their bacterial endocytobionts. FLA were cultured on non-nutrient agar with alive Escherichia coli and identified by PCR and sequencing. Amoebae were lysed and bacterial endocytobionts were cultured on TSA 1/10 and Drigalski medium. Bacterial isolates were identified by PCR and 16S rDNA sequencing and characterized for their antibiotic resistance properties. To measure bacterial virulence, the amoebal model Dictyostelium discoideum was used. The analysis of FLA diversity showed that Tetramitus was the most prevalent genus in agricultural soil from Burkina Faso (73%) and garden soil from Vietnam (42%) while Naegleria and Acanthamoeba were dominant genera in mining soil from Vietnam (55%) and French alpine soil (77%). Some genera were only present in one out of the four soils analyzed. The bacterial endocytobiont included Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Human opportunistic pathogens identified as Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Burkholderia cepacia were found associated with amoebae including Micriamoeba, Tetramitus, Willaertia, or Acanthamoeba. Some of these bacteria showed various antibiotic resistance phenotypes and were virulent. Our study confirms that the occurrence of these opportunistic bacteria with FLA in soils may be important for the survival, multiplication, and spread of pathogens in the environment.


Subject(s)
Acanthamoeba/microbiology , Amoeba/microbiology , Dictyostelium/microbiology , Escherichia coli/growth & development , Naegleria/microbiology , Symbiosis/physiology , Acanthamoeba/classification , Agriculture , Amoeba/classification , Burkina Faso , Escherichia coli/genetics , Escherichia coli/isolation & purification , Humans , Naegleria/classification , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...