Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 21(1): 416, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365574

ABSTRACT

BACKGROUND: Recent studies have discovered an emerging role of IL11 in various colitis-associated cancers, suggesting that IL11 mainly promotes tumor cell survival and proliferation in regulating tumorigenesis. Herein we aimed to reveal a novel function of IL-11 through STAT3 signaling in regulating tumor immune evasion. METHODS: AOM/DSS model in Il11-/- and Apcmin/+/Il11-/- mice were used to detect tumor growth and CD8+ T infiltration. STAT1/3 phosphorylation and MHC-I, CXCL9, H2-K1 and H2-D1 expression were detected in MC38 cells and intestine organoids treated with/without recombinant IL11 to explore effect of IL11/STAT3 signaling, with IL11 mutein used to competitively inhibit IL11 and rescue inhibited STAT1 activation. Correlation between IL11 and CD8+ T infiltration was analyzed using TIMER2.0 website. IL11 expression and survival prognosis was analyzed in clinical data of patient cohort from Nanfang Hospital. RESULTS: IL11 is highly expressed in CRC and indicates unfavorable prognosis. IL11 knockout increased CD8+ T cell infiltration and reduced intestinal and colon formation. Tumors were significantly suppressed while MHC-I and CXCL9 expression for CD8+ T infiltration were remarkably increased in the tumor tissues of Apcmin/+/Il11-/- mice or Il11-/- mice induced by AOM/DSS. IL11/STAT3 signaling downregulated MHC-I and CXCL9 by inhibiting IFNγ-induced STAT1 phosphorylation. IL11 mutein competitively inhibit IL11 to upregulate CXCL9 and MHC-I in tumor and attenuated tumor growth. CONCLUSIONS: This study ascribes for a new immunomodulatory role for IL11 during tumor development that is amenable to anti-cytokine based therapy of colon cancer.


Subject(s)
Colonic Neoplasms , Interleukin-11 , Mice , Animals , Interleukin-11/metabolism , Interleukin-11/pharmacology , Signal Transduction , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Cytokines/metabolism , CD8-Positive T-Lymphocytes/metabolism , STAT3 Transcription Factor/metabolism
2.
Clin Sci (Lond) ; 137(6): 495-510, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36896931

ABSTRACT

BACKGROUND: The disruption of the balance between osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) in bone marrow contributes to the adipocytes accumulation and bone loss, which leads to the development of osteoporosis (OP). The circular RNA (circRNA), circRBM23, was generated from the RNA binding motif protein 23 (RBM23) gene. It was reported that circRBM23 was down-regulated in OP patients, but it remains unknown whether its down-regulation is involved in the lineage switch of MSCs. OBJECTIVE: We aimed to explore the role and mechanism of circRBM23 in regulating the switch between osteogenic and adipogenic differentiation of MSCs. METHODS: The expression and function of circRBM23 in vitro were detected by qRT-PCR, alizarin red staining, and oil Red O staining. The interactions between circRBM23 and microRNA-338-3p (miR-338-3p) were analyzed by RNA pull-down assay, FISH, and dual-luciferase reporter assay. MSCs treated with lentivirus overexpression of circRBM23 was applied for both in vitro and in vivo experiments. RESULTS: CircRBM23 was expressed at lower levels in OP patients. Besides, circRBM23 was up-regulated during osteogenesis and down-regulated during adipogenesis of MSCs. CircRBM23 could promote the osteogenic differentiation but inhibit the adipogenic differentiation of MSCs. Mechanistically, circRBM23 acted as a sponge for microRNA-338-3p (miR-338-3p) to enhance the expression of RUNX family transcription factor 2 (RUNX2). CONCLUSIONS: Our research indicates that circRBM23 could promote the switch from adipogenic to osteogenic differentiation of MSCs via sponging miR-338-3p. It might improve the understanding of the lineage switch of MSCs and provide a potential target for diagnosing and treating OP.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , Humans , Adipogenesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Cells, Cultured , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism
3.
Cancer Sci ; 111(7): 2310-2324, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32372436

ABSTRACT

ETS homologous factor (EHF) plays a critical function in epithelial cell differentiation and proliferation. However, the roles of EHF in cancer remain largely unknown. In the present study, we investigated the expression levels, precise function and mechanism of EHF in colorectal carcinoma (CRC). We observed significantly elevated EHF expression in CRC cell lines and tissues. EHF overexpression correlated positively with poor differentiation, advanced T stage, and shorter overall survival of CRC patients. Function experiments revealed that EHF overexpression promoted CRC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, EHF could directly upregulate transforming growth factor ß1 (TGF-ß1) expression at the transcription level, thereby activating canonical TGF-ß signaling. Our findings provide novel insights into the mechanisms of EHF in tumorigenesis, invasion, and metastasis of CRC, which may help to provide new therapeutic targets for CRC intervention.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcriptional Activation , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Adult , Aged , Animals , Biomarkers, Tumor , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Disease Models, Animal , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Immunohistochemistry , Male , Mice , Middle Aged , Models, Biological , Neoplasm Metastasis , Neoplasm Staging , Protein Transport , Transcription Factors/genetics , Tumor Burden
4.
J Exp Clin Cancer Res ; 39(1): 1, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31928527

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have recently emerged as a new family of noncoding RNAs that are involved in the causation and progression of various cancers. However, the roles of circRNAs in the tumorigenesis of gastric cancer (GC) are still largely unknown. METHODS: The expression profiles of circRNAs in GC were identified in open GEO database and were evaluated at the mRNA level in clinical GC samples compared with paired non-tumorous tissues. Kaplan-Meier survival curve was used to analyze the correlation of circRNA and patients' prognosis. Subsequently, the circular structures of candidate circRNAs were validated by Sanger sequencing, divergent primer PCR, and RNase R treatments. Gain- and loss-of-function analyses were performed to evaluate the functional significance of it in GC initiation and progression. Dual-luciferase reporter and RNA pull-down assays were used to identify the microRNA (miRNA) sponge mechanism of circRNAs. RESULTS: The expression of circRHOBTB3 was lower in GC tissues and cell lines. Downregulation of circRHOBTB3 was significantly correlated with poor differentiation and unfavorable prognosis in patients with GC. Overexpression of circRHOBTB3 in GC cells led to decreased proliferation and induced G1/S arrest in vitro, accompanied with inhibited xenograft tumor growth in vivo, while the opposite effects were achieved in circRHOBTB3-silenced cells. Furthermore, we demonstrated that circRHOBTB3 acts as a sponge for miR-654-3p and verified that p21 is a novel target of miR-654-3p. CONCLUSION: Taken together, this study revealed that circRHOBTB3 might function as competing endogenous RNA (ceRNA) for miR-654-3p, which could contribute to growth inhibition of GC through activating p21 signaling pathway. Our data suggested that circRHOBTB3 would serve as a novel promising diagnosis marker and therapeutic target for GC.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/genetics , MicroRNAs/genetics , RNA, Circular/genetics , Stomach Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Neoplasm Transplantation , Prognosis , Stomach Neoplasms/genetics , Survival Analysis
5.
Oncogene ; 38(9): 1489-1507, 2019 02.
Article in English | MEDLINE | ID: mdl-30305727

ABSTRACT

Hsp90ab1 is upregulated in numerous solid tumors, which is thought to induce the angiogenesis and promote cancer metastasis. However, it's actions in gastric cancer (GC) has not been exhibited. In this study, Hsp90ab1 was demonstrated to be overexpressed and correlated with the poor prognosis, proliferation and invasion of GC. Ectopic expression of Hsp90ab1 promoted the proliferation and metastasis of GC cells both in vitro in cell line models of GC and in vivo using two different xenograft mouse models, while opposite effects were observed in Hsp90ab1 silenced cells. Moreover, the underlining molecular mechanism was explored by the co-immunoprecipitation, immunofluorescence, GST pull-down and in vitro ubiquitination assay. Namely, Hsp90ab1 exerted these functions via the interaction of LRP5 and inhibited ubiquitin-mediated degradation of LRP5, an indispensable coreceptor of the Wnt/ß-catenin signaling pathway. In addition, the crosstalk between Hsp90ab1 and LRP5 contributed to the upregulation of multiple mesenchymal markers, which are also targets of Wnt/ß-catenin. Collectively, this study uncovers the details of the Hsp90ab1-LRP5 axis, providing novel insights into the role and mechanism of invasion and metastasis in GC.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , HSP90 Heat-Shock Proteins/genetics , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Stomach Neoplasms/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Mice , Proto-Oncogene Proteins c-akt/genetics , Stomach Neoplasms/pathology , Wnt Signaling Pathway/drug effects , beta Catenin/genetics
6.
Cancer Cell Int ; 17: 122, 2017.
Article in English | MEDLINE | ID: mdl-29296105

ABSTRACT

BACKGROUND: Patient-derived xenografts (PDX) have a biologically stable in tumor architecture, drug responsiveness, mutational status and global gene-expression patterns. Numerous PDX models have been established to date, however their thorough characterization regarding the tumor formation and rates of tumor growth in the established models remains a challenging task. Our study aimed to provide more detailed information for establishing the PDX models successfully and effectively. METHODS: We transplanted four different types of solid tumors from 108 Chinese patients, including 21 glioblastoma (GBM), 11 lung cancers (LC), 54 gastric cancers (GC) and 21 colorectal cancers (CRC), and took tumor tissues passaged for three successive generations. Here we report the rate of tumor formation, tumor-forming times, tumor growth curves and mortality of mice in PDX model. We also report H&E staining and immunohistochemistry for HLA-A, CD45, Ki67, GFAP, and CEA protein expression between patient cancer tissues and PDX models. RESULTS: Tumor formation rate increased significantly in subsequent tumor generations. Also, the survival rates of GC and CRC were remarkably higher than GBM and LC. As for the time required for the formation of tumors, which reflects the tumor growth rate, indicated that tumor growth rate always increased as the generation number increased. The tumor growth curves also illustrate this law. Similarly, the survival rate of PDX mice gradually improved with the increased generation number in GC and CRC. And generally, there was more proliferation (Ki67+) in the PDX models than in the patient tumors, which was in accordance with the results of tumor growth rate. The histological findings confirm similar histological architecture and degrees of differentiation between patient cancer tissues and PDX models with statistical analysis by GraphPad Prism 5.0. CONCLUSION: We established four different types of PDX models successfully, and our results add to the current understanding of the establishment of PDX models and may contribute to the extension of application of different types of PDX models.

SELECTION OF CITATIONS
SEARCH DETAIL
...