Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
2.
Pestic Biochem Physiol ; 198: 105754, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225096

ABSTRACT

Ralstonia solanacearum (R. solanacearum) is one of the most devastating pathogens in terms of losses in agricultural production. Bentonite (Bent) is a promising synergistic agent used in development of effective and environmentally friendly pesticides against plant disease. However, the synergistic mechanism of Bent nanoclays with benzothiazolinone (BIT) against R. solanacearum is unknown. In this work, acid-functionalized porous Bent and cetyltrimethylammonium bromide (CTAB) were employed as the core nanoclays, and BIT was loaded into the clay to form BIT-loaded CT-Bent (BIT@CT-Bent) for the control of bacterial wilt disease. BIT@CT-Bent exhibited pH-responsive release behavior that fit the Fickian diffusion model, rapidly releasing BIT in an acidic environment (pH = 5.5). The antibacterial effect of BIT@CT-Bent was approximately 4 times greater than that of the commercial product BIT, and its biotoxicity was much lower than that of BIT under the same conditions. Interestingly, R. solanacearum attracted BIT@CT-Bent into the nanocomposites and induced cytoplasmic leakage and changes in membrane permeability, indicating an efficient and synergistic bactericidal effect that rapidly reduced bacterial density. In addition, BIT@CT-Bent significantly inhibited R. solanacearum biofilm formation and swimming activity, by suppressing the expression of phcA, solR and vsrC. Indeed, exogenous application of BIT@CT-Bent significantly suppressed the virulence of R. solanacearum on tobacco plants, with control effect of 75.48%, 72.08% and 66.08% at 9, 11 and 13 days after inoculation, respectively. This study highlights the potential of using BIT@CT-Bent as an effective, eco-friendly bactericide to control bacterial wilt diseases and for the development of sustainable crop protection strategies.


Subject(s)
Bentonite , Ralstonia solanacearum , Bentonite/pharmacology , Bentonite/metabolism , Anti-Bacterial Agents/pharmacology , Virulence , Hydrogen-Ion Concentration , Ralstonia solanacearum/metabolism , Plant Diseases/prevention & control , Plant Diseases/microbiology
3.
Animals (Basel) ; 14(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275780

ABSTRACT

Anemia and weaning stress are important factors affecting piglet growth performance. Spinach extract and licorice extract have been used to improve anemia and antioxidant capacity, respectively. However, whether they have synergistic effects has not been reported. To evaluate the effects of mixed spinach extract and licorice extract on growth performance, serum biochemistry, antioxidant capacity, and gut microbiota in weaned piglets, a total of 160 weaned piglets were randomly allotted to four treatments with four replications of 10 piglets each. The four treatments were as follows: control (CON) group (basal diet), spinach extract (SE) group (basal diet + 1.5 kg/t spinach extract), licorice extract (LE) group (basal diet + 400 g/t licorice extract), and spinach extract and licorice extract (MIX) group (basal diet + 1.5 kg/t spinach extract + 400 g/t licorice extract). The results showed that, compared with the CON group, diets supplemented with spinach extract and licorice extract significantly increased the average daily gain (p < 0.05), while considerably reducing the feed-to-gain ratio (p < 0.05). Moreover, the MIX group exhibited a significant up-regulation of serum total protein, globulin, albumin, glucose, and triglyceride levels in comparison to the CON group (p < 0.05). Meanwhile, both the anemia and antioxidant capacity of piglets were effectively improved. Notably, the MIX group achieved even better results than the individual supplementation in terms of enhancing growth performance, which could potentially be attributed to the increased abundance of the Rikenellaceae_RC9_gut_group. These results demonstrated that the supplementation of diets with spinach extract and licorice extract improves the absorption of nutrients from the diet and antioxidant capacity in weaned piglets.

4.
BMC Cancer ; 23(1): 1109, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964212

ABSTRACT

BACKGROUND: Current chemotherapy-induced peripheral neuropathy (CIPN) assessment tools mostly have poor sensitivity and weak anti-interference, so that it is sometimes difficult to provide substantive guidance for clinical intervention. This study aimed to develop an assessment tool dedicated for oxaliplatin to address these limitations. METHODS: This study screened 445 OIPN-related literatures for producing a symptom list, and developed the questionnaire module through expert supplement, item generation, content correlation analysis, pre-testing, and item improvement. The validation phase used a Chinese population-based prospective cohort study from June 2021 to July 2022. Patients were requested to complete the tested questionnaire, QLQ-CIPN20 and the CTCAE grading one day before cycles 2-6 of chemotherapy. Cronbach's α coefficient and intraclass correlation coefficient (ICC) were calculated for the internal consistency and stability analysis, respectively. Exploratory factor analysis was conducted to investigate the construct validity. The correlations among the tested questionnaire, QLQ-CIPN20 and CTCAE were compared for the criterion validity analysis. Wilcoxon signed-rank sum test was utilized to compare the sensitivity between the tested questionnaire and QLQ-CIPN20. RESULT: A 20-item CIPN assessment tool named chemotherapy-induced peripheral neuropathy integrated assessment - oxaliplatin subscale (CIPNIA-OS) was developed. The validation phase included 186 patients. Cronbach's α coefficient of CIPNIA-OS was 0.764 (> 0.7), and ICC was 0.997 (between 0.9 and 1). The structure of CIPNIA-OS containing seven factors was examined. The correlation coefficient between CIPNIA-OS and CTCAE was 0.661 (95%CI 0.623 to 0.695), which was significantly higher than that between QLQ-CIPN20 and CTCAE (0.417, 95%CI 0.363 to 0.469, p < 0.01). Besides, the total score of CIPNIA-OS was mostly higher than QLQ-CIPN20, with an average difference of 2.189 (CI 95% 2.056 to 2.322), and the difference gradually expanded with the progress of chemotherapy (p < 0.05). CONCLUSION: This study developed an original CIPN questionnaire which was dedicated for OIPN assessment. It was a comprehensive tool that covered acute OIPN symptoms and integrated features from several proven CIPN assessment tools. The validation results supported that CIPNIA-OS had satisfactory reliability, stability, construct, criterion validity, and was more accuracy and sensitive than QLQ-CIPN20 in the evaluation of OIPN.


Subject(s)
Antineoplastic Agents , Neoplasms , Peripheral Nervous System Diseases , Humans , Oxaliplatin/adverse effects , Antineoplastic Agents/adverse effects , Neoplasms/drug therapy , Reproducibility of Results , Prospective Studies , Quality of Life , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/drug therapy
5.
Cancer Immunol Immunother ; 72(12): 4457-4470, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796299

ABSTRACT

BACKGROUND: The inducible Kras/p53 lung adenocarcinoma mouse model, which faithfully recapitulates human disease, is routinely initiated by the intratracheal instillation of a virus-based Cre recombinase delivery system. Handling virus-based delivery systems requires elevated biosafety levels, e.g., biosafety level 2 (BSL-2). However, in experimental animal research facilities, following exposure to viral vectors in a BSL-2 environment, rodents may not be reclassified to BSL-1 according to standard practice, preventing access to small animal micro-computed tomography (micro-CT) scanners that are typically housed in general access areas such as BSL-1 rooms. Therefore, our goal was to adapt the protocol so that the Cre-induced KP mouse model could be handled under BSL-1 conditions during the entire procedure. RESULTS: The Kras-Lox-STOP-Lox-G12D/p53 flox/flox (KP)-based lung adenocarcinoma mouse model was activated by intratracheal instillation of either an adenoviral-based or a gutless, adeno-associated viral-based Cre delivery system. Tumor growth was monitored over time by micro-CT. We have successfully substituted the virus-based Cre delivery system with a commercially available, gutless, adeno-associated, Cre-expressing vector that allows the KP mouse model to be handled and imaged in a BSL-1 facility. By optimizing the anesthesia protocol and switching to a microscope-guided vector instillation procedure, productivity was increased and procedure-related complications were significantly reduced. In addition, repeated micro-CT analysis of individual animals allowed us to monitor tumor growth longitudinally, dramatically reducing the number of animals required per experiment. Finally, we documented the evolution of tumor volume for different doses, which revealed that individual tumor nodules induced by low-titer AAV-Cre transductions can be monitored over time by micro-CT. CONCLUSION: Modifications to the anesthesia and instillation protocols increased the productivity of the original KP protocol. In addition, the switch to a gutless, adeno-associated, Cre-expressing vector allowed longitudinal monitoring of tumor growth under BSL-1 conditions, significantly reducing the number of animals required for an experiment, in line with the 3R principles.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mice , Animals , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Dependovirus/genetics , X-Ray Microtomography , Tumor Suppressor Protein p53 , Containment of Biohazards , Disease Models, Animal , Genetic Vectors/genetics
6.
Front Immunol ; 14: 1174762, 2023.
Article in English | MEDLINE | ID: mdl-37287976

ABSTRACT

Background: Cancer stem cells (CSCs) play vital roles in lung adenocarcinoma (LUAD) recurrence, metastasis, and drug resistance. Cuproptosis has provided a novel insight into the treatment of lung CSCs. However, there is a lack of knowledge regarding the cuproptosis-related genes combined with the stemness signature and their roles in the prognosis and immune landscape of LUAD. Methods: Cuproptosis-related stemness genes (CRSGs) were identified by integrating single-cell and bulk RNA-sequencing data in LUAD patients. Subsequently, cuproptosis-related stemness subtypes were classified using consensus clustering analysis, and a prognostic signature was constructed by univariate and least absolute shrinkage operator (LASSO) Cox regression. The association between signature with immune infiltration, immunotherapy, and stemness features was also investigated. Finally, the expression of CRSGs and the functional roles of target gene were validated in vitro. Results: We identified six CRSGs that were mainly expressed in epithelial and myeloid cells. Three distinct cuproptosis-related stemness subtypes were identified and associated with the immune infiltration and immunotherapy response. Furthermore, a prognostic signature was constructed to predict the overall survival (OS) of LUAD patients based on eight differently expressed genes (DEGs) with cuproptosis-related stemness signature (KLF4, SCGB3A1, COL1A1, SPP1, C4BPA, TSPAN7, CAV2, and CTHRC1) and confirmed in validation cohorts. We also developed an accurate nomogram to improve clinical applicability. Patients in the high-risk group showed worse OS with lower levels of immune cell infiltration and higher stemness features. Ultimately, further cellular experiments were performed to verify the expression of CRSGs and prognostic DEGs and demonstrate that SPP1 could affect the proliferation, migration, and stemness of LUAD cells. Conclusion: This study developed a novel cuproptosis-related stemness signature that can be used to predict the prognosis and immune landscape of LUAD patients, and provided potential therapeutic targets for lung CSCs in the future.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Extracellular Matrix Proteins , Genes, Regulator , Lung Neoplasms/genetics , Nomograms , Prognosis , Copper
7.
Plant Dis ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37311231

ABSTRACT

From March to June 2022, Fusarium tobacco root rot broke out in Shaoguan Guangdong Province, China, affecting approximately 15% of tobacco production fields, with an incidence of 24% to 66%. In the early stage, the lower leaves showed chlorosis, and the roots became black. In the later stage, the leaves became browned and withered, the root cortices were broken and shed, and only a small number of roots were left. Eventually, the entire plant died. Six diseased plant samples (cv. yueyan 97) from Shaoguan (113.8°E, 24.8°N) were collected as test materials. The diseased root tissues (4×4 mm) were surface-sterilized using 75% ethanol for 30 s and 2% NaOCl for 10 min, rinsed 3 times with sterile water and incubated for 4 days on potato dextrose agar (PDA) medium at 25 °C. Fungal colonies were subcultured on fresh PDA, grown for the next 5 d and purified by single-spore separation. Eleven isolates with similar morphological characteristics were obtained. Their colonies were white and fluffy, and the bottoms of the culture plates were pale pink after 5 days of incubation. The macroconidia were slender, slightly curved and measured 18.54~45.85 µm×2.35~3.84 µm (n=50), with 3 to 5 septa. The microconidia were oval or spindle shaped, with one to two cells, and measured 5.56~16.76 µm×2.32~3.86 µm (n=50). Chlamydospores were absent. Such characteristics are typical of the genus Fusarium (Booth C, 1971). The SGF36 isolate was chosen for further molecular analysis. The TEF-1α and ß-tubulin genes (Pedrozo et al.2015) were amplified. Based on a phylogenetic tree (neighbor-joining method and 1,000 bootstrap values) obtained using multiplex alignments of concatenations of these two genes from 18 Fusarium species, SGF36 was grouped into a clade with Fusarium fujikuroi strain 12-1 (MK443268.1/MK443267.1) and F. fujikuroi isolate BJ-1 (MH263736.1/MH263737.1). To further identity the isolate, five additional gene sequences (rDNA-ITS (OP862807.1), RPB2, histone 3, calmodulin, and mitochondrial small subunit) (Pedrozo et al.2015), were subjected to BLAST searches in GenBank, and the results indicated that they were most similar to F. fujikuroi sequences, with sequence identities greater than 99%. The phylogenetic tree obtained using six genes except mitochondrial small subunit gene showed that SGF36 was grouped together with four F. fujikuroi strains to form a single clade. Pathogenicity was determined by the inoculation of wheat grains with fungi in potted tobacco plants. The SGF36 isolate was inoculated onto sterilized wheat grains, which were then incubated at 25 °C for 7 d. Thirty wheat grains with fungi were added to 200 g of sterilized soil, which was then mixed well and placed into pots. One six-leaf-stage tobacco seedling (cv. yueyan 97) was planted in each pot. A total of 20 tobacco seedlings were treated. Another 20 control seedlings were treated with wheat grains without fungi. All seedlings were placed in a greenhouse at 25 °C with 90% relative humidity. After 5 d, the leaves of all inoculated seedlings showed chlorosis, and the roots became discolored. No symptoms were observed in the controls. The fungus was reisolated from symptomatic roots and confirmed to be F. fujikuroi based on the TEF-1α gene sequence. No F. fujikuroi isolates were recovered from control plants. F. fujikuroi was previously reported to be associated with rice bakanae disease (Ram et al., 2018), soybean root rot (Zhao et al., 2020) and cotton seedling wilt (Zhu et al., 2020). To our knowledge, this is the first report of F. fujikuroi causing root wilt on tobacco in China. The identification of the pathogen may help to establish appropriate measures for controlling this disease.

9.
Front Pharmacol ; 14: 1135601, 2023.
Article in English | MEDLINE | ID: mdl-36937843

ABSTRACT

Introduction: Lung cancer, one of the most frequent malignancies, has a high death rate and an increased number of new cases globally. Ginkgo biloba has been used for many years in the treatment of lung cancer. Ginkgetin is the key active ingredient extracted from Ginkgo biloba. However, the mechanism by which ginkgetin inhibits the invasive metastasis of lung cancer is unclear. Methods: We used a network pharmacology approach to obtain the molecular mechanism by which ginkgetin inhibits lung cancer metastasis. Then we analyzed potential target proteins between ginkgetin and lung cancer. Finally, we validated with molecular docking and experimental validation. Results: By analyzing the intersecting genes of lung cancer and ginkgetin, there were 79 intersecting genes, which were mainly involved in the positive regulation of cell migration, with the cancer pathway being one of the most enriched pathways. The results of in vitro experiments showed that GK had a large inhibitory effect on cell invasion and metastasis of A549 and H1299. In vivo animals GK had a great inhibitory effect on metastasis of LLC. Conclusion: This study identified the potential related GK molecular targets and signaling pathways in treating human lung cancer using network pharmacological approaches. Experiments confirmed that GK inhibits the Akt/GSK-3ß/Snail and Wnt/ß-catenin cascade initiation in A549, H1299 and LLC cells, preventing metastasis. This study's results align with the hypotheses derived from the network pharmacology analysis.

10.
Funct Integr Genomics ; 23(2): 104, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36976410

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are well established to have an important role in cancer. The goal of this research was to investigate the prognostic usefulness of putative immune-related lncRNAs in hepatocellular carcinoma (HCC). METHODS: The developed lncRNA signature was validated using 343 HCC patients from The Cancer Genome Atlas (TCGA) and 81 samples from Gene Expression Omnibus (GEO). Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) analysis were used to analyze immune-related lncRNAs for HCC prognosis. Patients in the low-risk group survived substantially longer than those in the high-risk group (P < 0.05). The discovered signal might be a useful prognostic factor for predicting patient survival. Overall survival predicted some clinical net improvements, according to the nomogram. Numerous enrichment approaches (including gene set enrichment analysis) were utilized to investigate the underlying mechanisms. RESULTS: Drug metabolism, mTOR, and p53 signaling pathways were associated with high-risk groups. When the expression of lncRNA PRRT3-AS1 was silenced in HepG2 cells, the proliferation, migration, and invasion abilities of HepG2 cells were decreased, and apoptosis was enhanced. In the supernatant from HepG2 cells with PRRT3-AS1 knockdown, the anti-inflammatory factors IL-10 and TGF-1 were induced, whereas the pro-inflammatory factors IL-1ß, TNF-α, and IL-6 were reduced (P < 0.05). After PRRT3-AS1 knockdown, the protein expression of CD24, THY1, LYN, CD47, and TRAF2 in HepG2 cells was attenuated (P < 0.05). CONCLUSION: The discovery of five immune-related lncRNA signatures has significant therapeutic significance for predicting patient prognosis and directing personalized treatment for patients with HCC, which requires additional prospective confirmation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/genetics , RNA, Long Noncoding/genetics , Prospective Studies , Transcriptome , Liver Neoplasms/genetics , Biomarkers , Biomarkers, Tumor/genetics
11.
Phytomedicine ; 113: 154732, 2023 May.
Article in English | MEDLINE | ID: mdl-36933457

ABSTRACT

BACKGROUND: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear. PURPOSE: This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target. METHODS: An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB. RESULTS: Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication. CONCLUSION: Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.


Subject(s)
Adenocarcinoma of Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Mice , Animals , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Acetyl Coenzyme A/metabolism , Drugs, Chinese Herbal/pharmacology , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/drug therapy
12.
Basic Clin Pharmacol Toxicol ; 132(3): 242-252, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36482064

ABSTRACT

Bone tissue is a common metastatic site of lung cancer, and bone metastasis is characterized by abnormal differentiation and malfunction of osteoclast, and the roles of exosomes derived from lung cancer have attracted much attention. In our study, we found that the level of HOTAIR expression in A549 and H1299 exosomes was higher than those of normal lung fibrocytes. Overexpression of HOTAIR in A549 and H1299 exosomes promoted osteoclast differentiation. Furthermore, A549-Exos and H1299-Exos targeted bone tissues, and bone formation was significantly inhibited in vivo. Mechanistically, exosomal lncRNA HOTAIR promoted bone resorption by targeting TGF-ß/PTHrP/RANKL pathway.


Subject(s)
Osteoclasts , RNA, Long Noncoding , Humans , Cell Differentiation/genetics , Exosomes/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Osteoclasts/metabolism , Parathyroid Hormone-Related Protein/metabolism , RANK Ligand/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transforming Growth Factor beta/metabolism
13.
Int J Mol Sci ; 23(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36233258

ABSTRACT

Malignant pleural mesothelioma (MPM) is a rare but aggressive thoracic malignancy with limited treatment options. One of the standard treatments for MPM is chemotherapy, which consists of concurrent treatment with pemetrexed and cisplatin. Pemetrexed limits tumor growth by inhibiting critical metabolic enzymes involved in nucleotide synthesis. Cisplatin causes direct DNA damage, such as intra-strand and inter-strand cross-links, which are repaired by the nucleotide excision repair pathway, which depends on relatively high nucleotide levels. We hypothesized that prolonged pretreatment with pemetrexed might deplete nucleotide pools, thereby sensitizing cancer cells to subsequent cisplatin treatment. The MPM cell lines ACC-MESO-1 and NCI-H28 were treated for 72 h with pemetrexed. Three treatment schedules were evaluated by initiating 24 h of cisplatin treatment at 0 h (concomitant), 24 h, and 48 h relative to pemetrexed treatment, resulting in either concomitant administration or pemetrexed pretreatment for 24 h or 48 h, respectively. Multicolor flow cytometry was performed to detect γH2AX (phosphorylation of histone H2AX), a surrogate marker for the activation of the DNA damage response pathway. DAPI staining of DNA was used to analyze cell cycle distribution. Forward and side scatter intensity was used to distinguish subpopulations based on cellular size and granularity, respectively. Our study revealed that prolonged pemetrexed pretreatment for 48 h prior to cisplatin significantly reduced long-term cell growth. Specifically, pretreatment for 48 h with pemetrexed induced a cell cycle arrest, mainly in the G2/M phase, accumulation of persistent DNA damage, and induction of a senescence phenotype. The present study demonstrates that optimizing the treatment schedule by pretreatment with pemetrexed increases the efficacy of the pemetrexed-cisplatin combination therapy in MPM. We show that the observed benefits are associated with the persistence of treatment-induced DNA damage. Our study suggests that an adjustment of the treatment schedule could improve the efficacy of the standard chemotherapy regimen for MPM and might improve patient outcomes.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cisplatin/pharmacology , Cisplatin/therapeutic use , Histones , Humans , Lung Neoplasms/pathology , Mesothelioma/drug therapy , Mesothelioma/pathology , Nucleotides , Pemetrexed/pharmacology , Pemetrexed/therapeutic use , Pleural Neoplasms/drug therapy , Pleural Neoplasms/pathology
14.
Tohoku J Exp Med ; 258(4): 265-276, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36244757

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common and lethal types of cancer. This study aimed to identify the expression regulatory network and a prognostic signature of HCC. RNA-seq data from The Cancer Genome Atlas were used to identify the differentially expressed genes (DEGs) between HCC and normal liver tissues. DEGs were subjected to the construction of protein-protein interaction (PPI) network and enrichment analysis of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. The results showed that most of the DEGs were enriched in the cell cycle pathway, and the top 10 hub genes in the PPI network belong to the cell cycle pathway. A ceRNA network was constructed using starBase database, including one lncRNA (SNHG1), seven miRNAs (miR-195-5p, miR-199a-3p, miR-199a-5p, miR-199b-3p, miR-383-5p, miR-424-5p and miR-654-3p) and six of the top 10 hub genes (BUB1, CCNA2, CCNB1, KIF11, NCAPG, and TOP2A). In vitro experiments showed that knockdown of SNHG1 in the HCC cell lines (Huh7 and HepG2) decreased the expression of the six hub genes and cell viability, leading to cell cycle arrest at the G1 phase. These findings indicate that SNHG1 promotes cell proliferation by regulating cell cycle-related genes as a ceRNA. Additionally, Kaplan-Meier's survival and multivariate Cox regression analysis identified a prognostic signature of seven genes (including SNHG1 and the six SNHG1-regulated hub genes) for overall survival of HCC patients. In conclusion, this study identified a novel regulatory network in HCC and a potential independent prognostic factor for overall survival of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Biomarkers , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Cycle/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , Prognosis , RNA, Long Noncoding/genetics
15.
Cell Death Discov ; 8(1): 405, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36192384

ABSTRACT

Osseous metastases of pulmonary carcinoma and the detailed mechanisms remain unclear, and the effects of exosomes (Exos) originated from pulmonary adenocarcinoma cells in this process have received a lot of attentions. Our study revealed that the Exos secreted from A549 cells (A549-Exos) enhanced osteoclastogenesis and osseous resorption in vitro. In addition, A549-Exos showed a targeted effect on bones to enhance osseous resorption in vivo. A549-exosomal miR-328 enhanced osseous resorption via downregulating neuropilin 2 (Nrp-2) expression, and A549-Exos miR-328 inhibitors suppressed osseous resorption in vivo. Therefore, A549-exosomal miR-328 enhances osteoclastogenesis via downregulating Nrp-2 expression, thus A549-Exos miR-328 inhibitors can be used as a potential nanodrug for treating osseous metastases.

16.
Cell Mol Life Sci ; 79(8): 445, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35877003

ABSTRACT

Once considered a waste product of anaerobic cellular metabolism, lactate has been identified as a critical regulator of tumorigenesis, maintenance, and progression. The putative primary function of lactate dehydrogenase B (LDHB) is to catalyze the conversion of lactate to pyruvate; however, its role in regulating metabolism during tumorigenesis is largely unknown. To determine whether LDHB plays a pivotal role in tumorigenesis, we performed 2D and 3D in vitro experiments, utilized a conventional xenograft tumor model, and developed a novel genetically engineered mouse model (GEMM) of non-small cell lung cancer (NSCLC), in which we combined an LDHB deletion allele with an inducible model of lung adenocarcinoma driven by the concomitant loss of p53 (also known as Trp53) and expression of oncogenic KRAS (G12D) (KP). Here, we show that epithelial-like, tumor-initiating NSCLC cells feature oxidative phosphorylation (OXPHOS) phenotype that is regulated by LDHB-mediated lactate metabolism. We show that silencing of LDHB induces persistent mitochondrial DNA damage, decreases mitochondrial respiratory complex activity and OXPHOS, resulting in reduced levels of mitochondria-dependent metabolites, e.g., TCA intermediates, amino acids, and nucleotides. Inhibition of LDHB dramatically reduced the survival of tumor-initiating cells and sphere formation in vitro, which can be partially restored by nucleotide supplementation. In addition, LDHB silencing reduced tumor initiation and growth of xenograft tumors. Furthermore, we report for the first time that homozygous deletion of LDHB significantly reduced lung tumorigenesis upon the concomitant loss of Tp53 and expression of oncogenic KRAS without considerably affecting the animal's health status, thereby identifying LDHB as a potential target for NSCLC therapy. In conclusion, our study shows for the first time that LDHB is essential for the maintenance of mitochondrial metabolism, especially nucleotide metabolism, demonstrating that LDHB is crucial for the survival and proliferation of NSCLC tumor-initiating cells and tumorigenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Homozygote , Humans , Isoenzymes , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Lactates/metabolism , Lung Neoplasms/pathology , Mice , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Nucleotides/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Sequence Deletion
17.
J Ethnopharmacol ; 295: 115277, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35427725

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tumor-associated neutrophils (TANs) play an important role in tumor metastasis. The Traditional Chinese medicine (TCM) Feiyanning (FYN) has been clinically proven to effectively prevent the recurrence and metastasis of lung cancer, improve immunity, and prolong the survival period of lung cancer patients. However, its anti-metastatic immune mechanism has not been fully elucidated. To this end, we studied the mechanism of FYN's regulation of neutrophils infiltration in the tumor microenvironment (TME). AIM OF THE STUDY: To explore the anti-metastatic mechanism of FYN from the perspective of anti-immunosuppressive phenotype neutrophils infiltration in the TME. MATERIALS AND METHODS: TCM network pharmacological analysis was used to predict Feiyanning effective target. Flow cytometry was used to detect the proportion of immune cell subsets in the TME. Lung metastases were investigated in C57 mice by tail vein injection. Protein expression was evaluated by immunohistochemistry and Western blot. Gene expression was evaluated by qRT-PCR. RESULTS: FYN could reshape the tumor immune microenvironment. It prevents Tregs, M2 macrophages, and neutrophils infiltration, as well as recruits T cells, NK cells, and DCs, and improves DCs activation. In addition, FYN could regulate the polarization of TANs, inhibit the infiltration of neutrophils with an immunosuppressive phenotype, downregulate CXCLs/CXCR2 axis and inhibitory factors like Arg-1 and TGF-ß, and up-regulate the immune effector molecule ICAM-1. Furthermore, FYN increases anti-tumor immune effects in the TME to prevent tumor cells from spreading to the lungs. CONCLUSION: This study clarifies the potential mechanism of FYN in regulating neutrophils infiltration and anti-metastasis. FYN may regulate neutrophils infiltration in the TME by regulating CXCLs/CXCR2 axis.


Subject(s)
Lung Neoplasms , Receptors, Interleukin-8B , Animals , Humans , Lung Neoplasms/pathology , Macrophages/metabolism , Mice , Neutrophils/metabolism , Receptors, Interleukin-8B/metabolism , Tumor Microenvironment
18.
Cancer Cell Int ; 21(1): 611, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34801043

ABSTRACT

BACKGROUND: The underlying circular RNAs (circRNAs)-related competitive endogenous RNA (ceRNA) mechanisms of pathogenesis and prognosis in non-small cell lung cancer (NSCLC) remain unclear. METHODS: Differentially expressed circRNAs (DECs) in two Gene Expression Omnibus datasets (GSE101684 and GSE112214) were identified by utilizing R package (Limma). Circinteractome and StarBase databases were used to predict circRNA associated-miRNAs and mRNAs, respectively. Then, protein-protein interaction (PPI) network of hub genes and ceRNA network were constructed by STRING and Cytoscape. Also, analyses of functional enrichment, genomic mutation and diagnostic ROC were performed. TIMER database was used to analyze the association between immune infiltration and target genes. Kaplan-Meier analysis, cox regression and the nomogram prediction model were used to evaluate the prognostic value of target genes. Finally, the expression of potential circRNAs and target genes was validated in cell lines and tissues by quantitative real-time PCR (qRT-PCR) and Human Protein Atlas (HPA) database. RESULTS: In this study, 15 DECs were identified between NSCLC tissues and adjacent-normal tissues in two GEO datasets. Following the qRT-PCR corroboration, 7 DECs (hsa_circ_0002017, hsa_circ_0069244, hsa_circ_026337, hsa_circ_0002346, hsa_circ_0007386, hsa_circ_0008234, hsa_circ_0006857) were dramatically downregulated in A549 and SK-MES-1 compared with HFL-1 cells. Then, 12 circRNA-sponged miRNAs were screened by Circinteractome and StarBase, especially, hsa-miR-767-3p and hsa-miR-767-5p were significantly up-regulated and relevant to the prognosis. Utilizing the miRDB and Cytoscape, 12 miRNA-target genes were found. Functional enrichment, genomic mutation and diagnostic analyses were also performed. Among them, FNBP1, AKT3, HERC1, COL4A1, TOLLIP, ARRB1, FZD4 and PIK3R1 were related to the immune infiltration via TIMER database. The expression of ARRB1, FNBP1, FZD4, and HERC1 was correlated with poor overall survival (OS) in NSCLC patients by cox regression and nomogram. Furthermore, the hub-mRNAs were validated in cell lines and tissues. CONCLUSION: We constructed the circRNA-miRNA-mRNA network that might provide novel insights into the pathogenesis of NSCLC and reveal promising immune infiltration and prognostic biomarkers.

19.
EMBO Mol Med ; 13(9): e13193, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34369083

ABSTRACT

KRAS oncoprotein is commonly mutated in human cancer, but effective therapies specifically targeting KRAS-driven tumors remain elusive. Here, we show that combined treatment with fibroblast growth factor receptor 1 (FGFR1) and polo-like kinase 1 (PLK1) inhibitors evoke synergistic cytotoxicity in KRAS-mutant tumor models in vitro and in vivo. Pharmacological and genetic suppression of FGFR1 and PLK1 synergizes to enhance anti-proliferative effects and cell death in KRAS-mutant lung and pancreatic but not colon nor KRAS wild-type cancer cells. Mechanistically, co-targeting FGFR1 and PLK1 upregulates reactive oxygen species (ROS), leading to oxidative stress-activated c-Jun N-terminal kinase (JNK)/p38 pathway and E2F1-induced apoptosis. We further delineate that autophagy protects from PLK1/FGFR1 inhibitor cytotoxicity and that antagonizing the compensation mechanism by clinically approved chloroquine fully realizes the therapeutic potential of PLK1 and FGFR1 targeting therapy, producing potent and durable responses in KRAS-mutant patient-derived xenografts and a genetically engineered mouse model of Kras-induced lung adenocarcinoma. These results suggest a previously unappreciated role for FGFR1 and PLK1 in the surveillance of metabolic stress and demonstrate a synergistic drug combination for treating KRAS-mutant cancer.


Subject(s)
Lung Neoplasms , Receptor, Fibroblast Growth Factor, Type 1 , Animals , Cell Cycle Proteins , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Polo-Like Kinase 1
20.
Front Oncol ; 11: 690878, 2021.
Article in English | MEDLINE | ID: mdl-34277435

ABSTRACT

Feiyanning formula (FYN) is a traditional Chinese medicine (TCM) prescription used for more than 20 years in the treatment of lung cancer. FYN is composed of Astragalus membranaceus, Polygonatum sibiricum, Atractylodes macrocephala, Cornus officinalis, Paris polyphylla, and Polistes olivaceous, etc. All of them have been proved to have anti-tumor effect. In this study, we used the TCM network pharmacological analysis to perform the collection of compound and disease target, the prediction of compound target and biological signal and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. It was found that the activation of mitochondrial pathway might be the molecular mechanism of the anti-lung cancer effect of FYN. The experimental results showed that FYN had an inhibitory effect on the growth of lung cancer cells in a dose-dependent and time-dependent manner. Moreover, FYN induced G2/M cell cycle arrest and apoptotic cell death as early as 6 h after treatment. In addition, FYN significantly induced mitochondrial membrane depolarization and increased calreticulin expression. Metabolomics analysis showed the increase of ATP utilization (assessed by a significant increase of the AMP/ATP and ADP/ATP ratio, necessary for apoptosis induction) and decrease of polyamines (that reflects growth potential). Taken together, our study suggested that FYN induced apoptosis of lung adenocarcinoma cells by promoting metabolism and changing the mitochondrial membrane potential, further supporting the validity of network pharmacological prediction.

SELECTION OF CITATIONS
SEARCH DETAIL
...