Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Eur J Med Chem ; 265: 116099, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38160618

ABSTRACT

A series of butylphthalide and scutellarein hybrids 3-(alkyl/alkenyl) hydroxyphthalide derivatives were designed, synthesized and evaluated as multifunctional agents against Alzheimer's disease. In vitro bioactivity assays indicated that most of the compounds displayed excellent antioxidant activity and moderate to good inhibition activities of self-induced Aß1-42 aggregation. Among them, compound 7c was demonstrated as a potential and balanced multifunctional candidate displaying the best inhibitory effects on self- and Cu2+-induced Aß1-42 aggregation (90.2 % and 35.4 %, respectively) and moderate activity for disaggregation of Aß1-42 aggregation (42.5 %). In addition, 7c also displayed excellent antioxidant (2.42 Trolox equivalents), metal ions chelating, oxidative stress alleviation, neuroprotective and anti-neuroinflammatory activities. Furthermore, in vivo study demonstrated that 7c could ameliorate the learning and memory impairment induced by sodium nitrite and Aß1-42 in the step-down passive avoidance test. These balanced multifunctional profiles supporting compound 7c as a novel potential candidate for the treatment of AD.


Subject(s)
Alzheimer Disease , Apigenin , Benzofurans , Neuroprotective Agents , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Structure-Activity Relationship , Cholinesterase Inhibitors/pharmacology , Drug Design , Antioxidants , Acetylcholinesterase/metabolism
2.
J Pharm Biomed Anal ; 170: 295-304, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-30951995

ABSTRACT

Near infrared spectroscopy (NIR) was applied to discriminate the roots of salvia miltiorhiza Bunge (Danshen for short) and Salvia yunnanensis C. H. Wright (Zidanshen for short) by means of principal component analysis (PCA), improved and simplified K nearest neighbors (IS-KNN). Furthermore, an ultra-high performance liquid chromatographic (UHPLC) coupled with photodiode-array detector was developed for building fingerprints of lipophilic components of Danshen and Zidanshen, respectively. Basing on NIR information, both PCA and IS-KNN method classified the two kinds of Chinese medical herbs with 100% accuracy. The chromatographic fingerprints of the lipophilic components of Danshen and Zidanshen have 10 and 12 common peaks, respectively. Liquid chromatography coupled with mass spectroscopy (LC-MS-MS) was applied to identify these peaks. Among these, three small peaks in the fingerprints of Zidanshen are not found in Danshen, one of which was identified as α-lapachone, and the other two compounds were not yet identified; a small peak after tanshinone IIA in the fingerprints of Danshen was not found in Zidanshen, which was identified as miltirone. The two herbs have 10 common lipophilic components. The similarity between the two reference chromatograms of Zidanshen and Danshen is 0.902, but the mean similaritie between Zidanshen (or Danshen) fingerprints and its own reference chromatogram is 0.973 (or 0.976). The contents of main lipophilic components are significantly lower in Zidanshen than in Danshen (P < 0.01 or P < 0.05). The results indicate that the two Chinese medical materials are not only different in NIR spectra, but also different in species and quantities of lipophilic components. NIR spectra analysis can identify Danshen and Zidanshen rapidly and accurately. UHPLC coupled with MS analysis demonstrates the detail differences between the two herbs both in species and contents of their lipophilic components.


Subject(s)
Plant Roots/chemistry , Salvia miltiorrhiza/chemistry , Salvia/chemistry , Abietanes/chemistry , Azabicyclo Compounds/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Cyclooctanes/chemistry , Drugs, Chinese Herbal/chemistry , Evaluation Studies as Topic , Phenanthrenes/chemistry , Piperidines/chemistry , Principal Component Analysis , Tandem Mass Spectrometry/methods
3.
Zhongguo Zhong Yao Za Zhi ; 44(6): 1208-1215, 2019 Mar.
Article in Chinese | MEDLINE | ID: mdl-30989985

ABSTRACT

Fingerprints of lipophilic components in the roots of Salvia miltiorrhiza and S.yunnanensis were analyzed by UPLC-DADand UPLC coupled with mass spectroscopy to evaluate the differences and similarities of the lipophilic components in the two kinds of herbs.The UPLC analysis of 18 batches of S.miltiorrhiza and 16 batches of S.yunnanensis was performed on a 25℃Thermo Accucore C_(18)column(2.1 mm×100 mm,2.6µm)by Shimadzu LC-20AD;mobile phase was 0.026%phosphoric acid(A)-acetonitrile(B)with gradient elution;flow rate was 0.4 m L·min~(-1);detection wavelength was set at 270 nm;injection volume was 2µL.The molecular structures of the lipophilic components were analyzed on a 25℃Thermo Accucore C_(18)column(2.1 mm×100 mm,2.6µm)by Thermo U3000 UPLC Q Exactive Orbitrap LC-MS/MS with a mobile phaseconsisting of 0.1%formic acid water(A)and 0.1%formic acidacetonitrile(B).The mass spectrometry was acquired in positive modes using ESI.There are 10 common peaks in the lipophilic components of S.miltiorrhiza.The similarity between the 16 batches of S.miltiorrhiza and their own reference spectra was greater than 0.942,and the average similarity was 0.973.There are 12 common peaks in the lipophilic components of S.yunnanensis.The similarity between the 18 batches of S.yunnanensis and their own reference spectra was greater than 0.937,and the average similarity was 0.976.The similarity between the reference chromatograms of S.miltiorrhiza and S.yunnanensis was only 0.900.There are three lipophilic components in S.yunnanensis,which are not found in S.miltiorrhiza,and one of which isα-lapachone.There is a lipophilic component in S.miltiorrhiza not found in S.yunnanensis,which may be miltirone.The two herbs contain 8 common lipophilic components including dihydrotanshinoneⅠ,cryptotanshinone,tanshinoneⅠ,tanshinoneⅡ_A,nortanshinone in which the content of tanshinoneⅡ_A,dihydrotanshinoneⅠand cryptotanshinone of S.yunnanensisis significantly lower than that of S.miltiorrhiza(P<0.01),and the contents of tanshinoneⅠand nortanshinone are significantly lower than that of S.miltiorrhiza too(P<0.05).There are significant differences in the types and contents of lipophilic components between the roots of S.miltiorrhiza and S.yunnanensis,and the similarity between the fingerprints of interspecies is much lower than that between the same species.Therefore,the roots of S.miltiorrhiza and S.yunnanensis are two kinds of herbs which are quite different in chemical compounds and compositions.


Subject(s)
Salvia miltiorrhiza , Abietanes , Chromatography, Liquid , Molecular Structure , Plant Roots , Tandem Mass Spectrometry
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 19(2): 200-3, 2002 Jun.
Article in Chinese | MEDLINE | ID: mdl-12224280

ABSTRACT

This study sought to make a biomechanical analysis of the diffuse axonal injury(DAI) animal model caused by nonimpact with half bound head in cats. A three-dimensional finite element model of cat's head was established. The head of an anesthetized cat was scanned in 2 mm section. The nods and element meshes were signed out according to the geometry of every section. The geometric data were put into the computer and the element mesh body of cat's head was established in vizi CAD system. The maximum stress, minimum stress and von Mises stress were calculated by Super SAP (93ed) finite elemental software when the force was loaded on the right or left side of model in zero section. The analysis showed that the maximum stress appeared in the anterior and posterior loaded point and extended to cranial base in the cranial shell. There was high stress in the brain surface also. Because of cerebellar tentorium, cerebral falx, petrosal bone and sellar process, the stress did not decrease equivalently while approaching the deep brain, but it was distributed in cerebral-cerebellar peduncles, brain stem, corpus callosum and basal ganglia area at high values. The results suggest that the stress caused by rotational force is widespreadly and unequivalently distributed in brain tissue, which is mainly effected by the cerebellar tentorium, cerebral falx and the irregular geometric forms of cranial bone.


Subject(s)
Brain Injuries/pathology , Brain/pathology , Diffuse Axonal Injury/pathology , Finite Element Analysis , Models, Animal , Animals , Biomechanical Phenomena , Cats , Head , Rotation , Skull
SELECTION OF CITATIONS
SEARCH DETAIL
...