Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Mikrochim Acta ; 191(2): 111, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38252316

ABSTRACT

A simple and ultrasensitive sandwich-type electrochemiluminescence (ECL) immunosensor has been developed using porous three-dimensional gold nanoparticles (Au NPs) iron(Fe)-zinc(Zn) metal-organic frameworks (Au NPs-FeZn-MOFs@luminol) as high-efficiency ECL signal probes with Fe single-atom catalysts (SACs) (Fe-N-C SACs) as potentially advanced coreaction accelerators and dissolved oxygen as a coreaction agent to realize an H2O2-free amplification method for detecting carcinoembryonic antigen (CEA). The cathodic ECL of luminol, which was usually negligible, increased first. Because the Fe-N-C SACs exhibited an outstanding catalytic performance and a unique electronic structure, different reactive oxygen species (ROS) were generated via the oxygen reduction reaction. ROS oxidized the luminol anions to luminol anion radicals, preventing the time-consuming luminol electrochemical oxidation. Furthermore, the luminol anion radicals generated in situ reacted with ROS to produce potent cathodic ECL emissions. The immunosensor exhibited favorable analytical accuracy (detection range: 0.1 pg mL-1 - 80 ng mL-1), and its detection limit for serum samples was 0.031 pg mL-1 (S/N = 3). Consequently, the proposed strategy offers a new approach for early screening of CEA.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Carcinoembryonic Antigen , Gold , Immunoassay , Luminol , Reactive Oxygen Species , Iron , Anions
SELECTION OF CITATIONS
SEARCH DETAIL