Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Res ; 38(3): 633-643, 2023.
Article in English | MEDLINE | ID: mdl-36741987

ABSTRACT

Realizing breathable shape memory fiber-based material with antibacterial and waterproof performances is important for multitiered wearable protection to address the increasing concerns of air pollution. Herein, using an alternating electrospinning-electrospraying technology, we develop a fiber-based membrane with Janus wettability based on a silk fibroin nanofibers-substrate (SFNFs), a polyurethane nanospheres-top layer (PUNSs), and a middle layer of PU nanofibers-mat with in-situ grown silver nanoparticles (PUNFs-AgNPs), which serves separately for skin contact, a self-cleaning physical barrier to resist external aerosol/bacteria (PM2.5 filtration efficiency ~ 98.1%), and a bio-barrier that can sterilize harmful particles and inhibit bacteria proliferation (> 95%). This breathable Janus film (SFNFs/PUNFs-AgNPs/PUNSs, SPAP) with an antibacterial filter shows shape memory stretchability enabled by the thermoplastic PU component, which is mechanically adaptive to human body for wearable protection. This work presents a breathable wearable material for air-filtration and anti-bacteria, promising for applications such as wound dressings, medical masks, protection suits, and multifunctional filters. Graphical abstract: An alternating electrospinning-electrospraying technology was proposed to achieve a silk fibroin-based antibacterial membrane with Janus wettability, as well as good skin affinity and breathability, which serves well as physical and bio-barriers for water resistance, PM2.5 filtration (~98.1%) and bacteria inhibition (efficiency of 95%). This shape memory Janus membrane can adapt mechanically to human body curvatures for functional wearable protections. Supplementary Information: The online version contains supplementary material available at 10.1557/s43578-022-00805-w.

2.
Macromol Biosci ; 22(8): e2200029, 2022 08.
Article in English | MEDLINE | ID: mdl-35598095

ABSTRACT

Paracetamol is a safe and widely used antipyretic and analgesic drug, however, with the drawbacks of gastrointestinal first-pass effect and short intervals of administration. Transdermal drug delivery system can effectively avoid the liver metabolism caused by excess oral ingestion of paracetamol. Herein, a silk fabric-based medical dressing decorated by a thermo-responsive hydrogel for sustained release of paracetamol is proposed. Genipin as a bio-safe cross-linker is applied to assist gelation of a thermo-responsive hydrogel system coupled with chitosan and glycerol-phosphate disodium salt around body temperature (37 °C), as well as densifying the microporous gel to improve mechanical strength. The in situ sol-gel transition enabled hydrogel well penetrate and coat the silk fabric, forming a hierarchical hydrogel structure capable of prolonging the sustained release of drug to 12 h, twice as long as a blank fabric. The silk fabric with a thin gel coating maintains a good water vapor transmission rate, compatible for skin contact application. The drug release properties can be tuned by regulating the genipin content and fabric braiding structure. The silk fabric dressing exhibits temperature-dependent instant release behavior within the first 2 h. The sustained release mechanism of paracetamol well matches with the Korsmeyer-Peppas model in a non-Fickian diffusion.


Subject(s)
Chitosan , Hydrogels , Acetaminophen , Chitosan/chemistry , Delayed-Action Preparations/pharmacology , Hydrogels/chemistry , Silk , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...