Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Mol Biotechnol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850457

ABSTRACT

Long intergenic non-coding RNA 239 (Linc00239) acts as an oncogene in colorectal cancer (CRC), esophageal squamous cell carcinoma, and acute myeloid leukemia cells. However, its role and regulatory mechanisms in clear cell renal cell carcinoma (ccRCC) remain unknown. We used StarBase and The Cancer Genome Atlas databases to evaluate Linc00239 expression and its effect on ccRCC. Furthermore, the function of Linc00239 in ccRCC proliferation and metastasis was analyzed using Cell Counting Kit-8 and Transwell assays following Linc00239 knockdown. Subsequently, the Linc00239-miRNA-mRNA regulatory associations were selected based on miRanda, miTarbase, and previous references, and their expression levels and binding relationship were further validated using quantitative real-time polymerase chain reaction, western blotting and dual-luciferase reporter gene assay. Additionally, we transfected a miRNA inhibitor to evaluate whether the miR-204-5p/RAB22A (Ras-related proteins in brain 22a) axis was involved in Linc00239 function. Linc00239 was elevated in ccRCC and correlated with poor prognosis. Linc00239 knockdown inhibited ccRCC progression. Additionally, Linc00239 inhibition elevated miR-204-5p expression and repressed RAB22A levels. Moreover, miR-204-5p inhibitors attenuated this inhibitory effect on proliferation, migration, invasion, and RAB22A level when Linc00239 was knocked down. Linc00239 promotes ccRCC proliferation and metastasis by elevating RAB22A expression through the adsorption of miR-204-5p, which provides a clue for the diagnosis and treatment of ccRCC.

2.
Sci Rep ; 14(1): 3198, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38332160

ABSTRACT

Bladder cancer (BLCA) is a malignant tumor associated with unfavorable outcomes. Studies suggest that anoikis plays a crucial role in tumor progression and cancer cell metastasis. However, its specific role in bladder cancer remains poorly understood. Our objective was to identify anoikis-related genes (ARGs) and subsequently construct a risk model to assess their potential for predicting the prognosis of bladder cancer.The transcriptome data and clinical data of BLCA patients were sourced from The Cancer Genome Atlas and GEO database. We then performed the differential expression analysis to screen differentially expressed ARGs. Subsequently, we conducted non-negative matrix factorization (NMF) clustering analysis to establish molecular subtypes based on the differentially expressed ARGs. The CIBERSORT algorithm was used to estimate the quantification of different cell infiltration in BLCA tumor microenviroment. A prognostic risk model containing 7 ARGs was established using Lasso-Cox regression analysis. The nomogram was built for predicting the survival probability of BLCA patients. To determine the drug sensitivity of each sample from the high- and low-risk groups, the R package "pRRophetic" was performed. Finally, the role of LYPD1 was explored in BLCA cell lines.We identified 90 differential expression ARGs and NMF clustering categorizated the BLCA patientss into two distinct groups (cluster A and B). Patients in cluster A had a better prognosis than those in cluster B. Then, we established a ARGs risk model including CALR, FASN, FOSL1, JUN, LYPD1, MST1R, and SATB1, which was validated in the train and test set. The results suggested overall survival rate was much higher in low risk group than high risk group. The cox regression analysis, ROC curve analysis, and nomogram collectively demonstrated that the risk model served as an independent prognostic factor. The high risk group had a higher level TME scores compared to the low risk group. Furthermore, LYPD1 was low expression in BLCA cells and overexpression of LYPD1 inhibits the prolifearation, migration and invasion.In the current study, we have identified differential expression ARGs and constructed a risk model with the promise for guiding prognostic predictions and provided a therapeutic target for patients with BLCA.


Subject(s)
Matrix Attachment Region Binding Proteins , Urinary Bladder Neoplasms , Humans , Anoikis/genetics , Urinary Bladder Neoplasms/genetics , Genes, Homeobox , Urinary Bladder , Nomograms , Prognosis
3.
J Hazard Mater ; 465: 133451, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38228004

ABSTRACT

The environmental impacts of As mobilization and nitrous oxide (N2O) emission in flooded paddy soils are serious issues for food safety and agricultural greenhouse gas emissions. Several As immobilization strategies utilizing microbially-mediated nitrate reducing-As(III) oxidation (NRAO) and birnessite (δ-MnO2)-induced oxidation/adsorption have proven effective for mitigating As bioavailability in flooded paddy soils. However, several inefficiency and unsustainability issues still exist in these remediation approaches. In this study, the effects of a combined treatment of nitrate and birnessite were assessed for the simultaneous suppression of As(III) mobilization and N2O emission from flooded paddy soils. Microcosm incubations confirmed that the combined treatment achieved an effective suppression of As(III) mobilization and N2O emission, with virtually no As(T) released and at least a 87% decrease in N2O emission compared to nitrate treatment alone after incubating for 8 days. When nitrate and birnessite are co-amended to flooded paddy soils, the activities of denitrifying enzymes within the denitrification electron transport pathway were suppressed by MnO2. As a result, the majority of applied nitrate participated in nitrate-dependent microbial Mn(II) oxidation. The regenerated biogenetic MnO2 was available to facilitate subsequent cycles of As(III) immobilization and concomitant N2O emission suppression, sustainable remediation strategy. Moreover, the combined nitrate-birnessite amendment promoted the enrichment of Pseudomonas, Achromobacter and Cupriavidu, which are known to participate in the oxidation of As(III)/Mn(II). Our findings document strong efficacy for the combined nitrate/birnessite treatment as a remediation strategy to simultaneously mitigate As-pollution and N2O emission, thereby improving food safety and reducing greenhouse gas emissions from flooded paddy soils enriched with NH4+ and As.


Subject(s)
Greenhouse Gases , Oryza , Soil , Oxides , Nitrates/metabolism , Manganese Compounds , Nitrous Oxide/metabolism , Oryza/metabolism
4.
Cell Prolif ; : e13587, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38084819

ABSTRACT

The majority of neocortical projection neurons are generated indirectly from radial glial cells (RGCs) mediated by intermediate progenitor cells (IPCs) in mice. IPCs are thought to be a great breakthrough in the evolutionary expansion of the mammalian neocortex. However, the precise ratio of neuron production from IPCs and characteristics of RGC differentiation process are still unclear. Our study revealed that direct neurogenesis was seldom observed and increased slightly at late embryonic stage. Besides, we conducted retrovirus sparse labelling combined carboxyfluorescein diacetate succinimide ester (CFSE) and Tbr2-CreER strain to reconstruct individual lineage tree in situ. The lineage trees simulated the output of RGCs at per round of division in sequence with high temporal, spatial and cellular resolution at P7. We then demonstrated that only 1.90% of neurons emanated from RGCs directly in mouse cerebral neocortex and 79.33% of RGCs contributed to the whole clones through IPCs. The contribution of indirect neurogenesis was underestimated previously because approximately a quarter of IPC-derived neurons underwent apoptosis. Here, we also showed that abundant IPCs from first-generation underwent self-renewing division and generated four neurons ultimately. We confirmed that the intermediate proliferative progenitors expressed higher Cux2 characteristically at early embryonic stage. Finally, we validated that the characteristics of neurogenetic process in lineages and developmental fate of neurons were conserved in Reeler mice. This study contributes to further understanding of neurogenesis in neocortical development.

5.
Cell Death Discov ; 9(1): 292, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37558664

ABSTRACT

Bladder cancer (BLCA) is the 9th most common cancer of mortality. Autophagy and epithelial to mesenchymal transition (EMT) have an essential role in cancer invasion and metastasis. However, the relationship between autophagy and EMT is still poorly understood in BLCA. Functional enrichment and pathway network analysis were carried out. Comprehensive protein-protein interactions (PPI) networks were proposed to prioritize candidate autophagy-related genes. Furthermore, an autophagy-related signature and a nomogram model were established by integrating clinical information and this signature risk score to evaluate candidate autophagy-related genes. RAB14 expression and its association with pathological information and survival were evaluated in samples from TCGA dataset. Knocking down RAB14 in T24 cells was constructed, and immunofluorescence staining, transmission electron microscopy, immunohistochemistry and western blotting and a series of functional assays were performed to evaluate the migration, invasion, EMT and autophagy abilities of BLCA cells. The autophagy-related gene RAB14 was the only candidate gene identified by three kinds of analytic approaches. RAB14 was highly upregulated in BLCA and correlated with clinical outcomes based on TCGA BLCA datasets. Knocking down RAB14 was found to inhibit EMT and autophagy in T24 cells. RAB14 levels were positively related to those of LC3B and Beclin1, two genes with critical roles in the autophagy process, and the correlation was further confirmed in clinical tissue specimens by IHC and western blot analysis. In addition, RAB14-promoted EMT, migration, and invasion in T24 cells could be partially reversed by autophagy activator, rapamycin. The effects of RAB14 on autophagy was associated with level of p-Akt, indicating that they were possibly mediated via PI3K/AKT signaling. These findings indicated that autophagy-related gene RAB14-promoted EMT, migration and invasion of bladder cancer via the Akt-associated autophagic pathway.

6.
Gene ; 882: 147628, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37429368

ABSTRACT

OBJECTIVE: The objective of our study is to investigate the role and potential mechanism of linc00023 in the development of pyroptosis in clear cell renal cell carcinoma (ccRCC). METHODS: We assessed the expression of linc00023 in cells using qRT-PCR. Following linc00023 knockdown, we monitored cell proliferation and the pyroptosis marker using MTS, qRT-PCR, western blot analysis, and ELISA assays. Additionally, we performed RNA sequencing after linc00023 knockdown and validated the involvement of p53 using western blot analysis. Furthermore, we evaluated the potential mechanism by assessing cell proliferation and the expression of the pyroptosis marker after treatment with a p53 activator in linc00023-inhibited cells. RESULTS: Linc00023 expression was downregulated in ccRCC cells. Among them, ACHN cells exhibited higher linc00023 expression and were selected for further investigation. Knockdown of linc00023 resulted in increased cell proliferation and decreased pyroptosis. Furthermore, inhibition of linc00023 led to changes in the expression of numerous mRNAs, including p53. Importantly, the p53 activator ReACp53 reversed the effects of linc00023 knockdown on cell proliferation and pyroptosis. CONCLUSION: In conclusion, our findings suggested that linc00023 regulates pyroptosis in ccRCC by modulating p53 expression.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Pyroptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics
7.
Front Oncol ; 13: 1115718, 2023.
Article in English | MEDLINE | ID: mdl-37077837

ABSTRACT

Background: Biochemical recurrence (BCR) is common in prostate cancer (PCa), but its prediction is based predominantly on clinicopathological characteristics with low accuracy. We intend to identify a potential prognostic biomarker related to the BCR and construct a nomogram for improving the risk stratification of PCa patients. Methods: The transcriptome and clinical data of PCa patients were obtained from TCGA and GEO databases. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to screen out differentially expressed genes (DEGs) related to the BCR of PCa. Cox regression analysis was further applied to screen out DEGs related to BCR-free survival (BFS). Time-dependent receiver operating curve (ROC) analysis and Kaplan-Meier (K-M) survival analysis were conducted to assess the prognostic value. Then, a prognostic nomogram was established and evaluated. The clinicopathological correlation analysis, GSEA analysis, and immune analysis were used to explore the biological and clinical significance of the biomarker. Finally, the qRT-PCR, western blotting, and immunohistochemistry (IHC) were conducted to validate the expression of the biomarker. Results: BIRC5 was identified to be the potential prognostic biomarker. The clinical correlation analysis and K-M survival analysis found that the BIRC5 mRNA expression was positively associated with disease progression and negatively associated with the BFS rate. Time-dependent ROC curves verified its accurate prediction performance. The GSEA and immune analysis suggested that the BIRC5 was related to immunity. A nomogram with an accurate prediction for BFS of PCa patients was constructed. qRT-PCR, western blotting, and IHC results validated the expression level of BIRC5 in PCa cells and tissues. Conclusion: Our study identified BIRC5 as a potential prognostic biomarker related to BCR of PCa and constructed an efficacy nomogram for predicting BFS to assist clinical decision-making.

8.
BMC Cancer ; 22(1): 510, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35524222

ABSTRACT

BACKGROUND: Better prognostic outcome is closely correlated with early detection of bladder cancer. Current non-invasive urianalysis relies on simultaneously testing multiple methylation markers to achieve relatively high accuracy. Therefore, we have developed an easy-to-use, convenient, and accurate single-target urine-based DNA methylation test for the malignancy. METHODS: By analyzing TCGA data, 344 candidate markers with 424 primer pairs and probe sets synthesized were systematically screened in cancer cell lines, paired tissue specimens, and urine sediments from bladder cancer patients and normal controls. The identified marker was further validated in large case-control cohorts. Wilcoxon rank sum tests and c2 tests were performed to compare methylation levels between case-control groups and correlate methylation levels with demographic and clinical characteristics. In addition, MSP, qMSP, RT-PCR, western blot analysis, and immunohistochemistry were performed to measure levels of DNA methylation, mRNA transcription, and protein expression in cancer cell lines and tissues. RESULTS: A top-performing DMRTA2 marker identified was tested in both discovery and validation sets, showing similar sensitivity and specificity for bladder cancer detection. Overall sensitivity in the aggregate set was 82.9%(179/216). The specificity, from a control group consisting of patients with lithangiuria, prostatoplasia, and prostatitis, is 92.5%(468/506). Notably, the methylation assay had the highest sensitivities for tumors at stages of T1(90.4%) and T2(95.0%) compared with Ta (63.0%), T3(81.8%), and T4(81.8%). Furthermore, the test showed admirable detection rate of 80.0%(24/30) for recurring cancers. While methylation was observed in 39/54(72.2%) urine samples from patients with carcinomas of renal pelvis and ureter, it was detected at extremely low rate of 6.0%(8/133) in kidney and prostate cancers. Compared with SV-HUC-1, the normal bladder epithelial cell line, DMRTA2 was hypermethylated in 8/9 bladder cancer cell lines, consistent with the results of MSP and qMSP, but not correlated with mRNA and protein expression levels in these cell lines. Similarly, DMRTA2 immunostaining was moderate in some tissues but weak in others. Further studies are needed to address functional implications of DMRTA2 hypermethylation. CONCLUSIONS: Our data demonstrated that a single-target DNA methylation signature, mDMRTA2, could be highly effective to detect both primary and recurring bladder cancer via urine samples.


Subject(s)
DNA Methylation , Urinary Bladder Neoplasms , Biomarkers, Tumor/metabolism , Female , Humans , Liquid Biopsy , Male , RNA, Messenger/metabolism , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
9.
Int J Gen Med ; 14: 9773-9787, 2021.
Article in English | MEDLINE | ID: mdl-34934351

ABSTRACT

PURPOSE: This study aimed to evaluate the functions of critical N6-methyladenosine (m6A)-related long non-coding RNAs (lncRNAs) and their correlations with immunotherapeutic targets in clear cell renal cell carcinoma (ccRCC). METHODS: m6A-related lncRNAs were analyzed using the dataset from The Cancer Genome Atlas database via Pearson correlation analysis. Then, their prognostic functions in patients with ccRCC were determined via univariate Cox analysis. A prognostic m6A-related lncRNA signature (MRLS) in ccRCC was established using the least absolute shrinkage and selection operator (LASSO) Cox regression model. In addition, the correlations between these prognostic m6A-related lncRNAs with immune checkpoints were further evaluated in clinical samples. RESULTS: MRLS was established by the LASSO Cox regression model on the basis of seven prognostic m6A-related lncRNAs. The risk score for each patient was calculated using the MRLS model, and the patients were further stratified into high- and low-risk subgroups. The MRLS model was validated with a robust prognostic ability by the stratification analysis. On the basis of age, grade, stage, and risk score, a nomogram was developed with a strong reliability in forecasting the overall survival percentages of the patients with ccRCC. Moreover, seven prognostic m6A-related lncRNAs enrolled in the MRLS model were found to be correlated with various immunotherapeutic targets, namely, PD-1, PD-L1, CTLA4, and LAG3, and the expression levels of which in the high-risk subgroup were significantly higher than those in the low-risk subgroup. The significant correlations between LINC00342 and the aforementioned immunotherapeutic targets were also confirmed in clinical samples. CONCLUSION: In this study, seven m6A-related lncRNAs were identified as potential biomarkers for forecasting the prognosis of patients with ccRCC and evaluating the efficacy of immunotherapy for these patients. Furthermore, a prognostic and predictive MRLS model with a high reliability was constructed to predict the overall survival probability of patients with ccRCC.

10.
Environ Sci Technol ; 55(19): 12871-12881, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34559513

ABSTRACT

Airborne microplastics (MPs) are receiving increasing attention due to their ubiquitous nature and the potential human health consequences resulting from inhalation. The limited data for airborne MP concentrations vary widely among studies (∼4 orders of magnitude), but comparisons are tenuous due to the inconsistent collection and detection/enumeration methodologies among studies. Herein, we used uniform methodologies to obtain comparable airborne MP concentration data to assess MP exposure intensity in five Chinese megacities. Airborne MP concentrations in northern cities (358 ± 132 items/m3) were higher than those in southeast cities (230 ± 94 items/m3) but of a similar order of magnitude, unlike previous studies. The majority (94.7%) of MPs found in air samples were smaller than 100 µm, and the main shape of airborne MPs was fragments (88.2%). Polyethylene, polyester, and polystyrene were the dominant polymers comprising airborne MPs. No consistent relationships were detected between airborne MP concentration and typical socioeconomic indices, and the spatial and diurnal patterns for airborne MPs were different from various components of air quality indices (PM2.5, PM10, etc.). These findings reflect the contrasting source/generation dynamics between airborne MPs and other airborne pollutants. Maximum annual exposure of humans to airborne MPs was estimated in the range of 1-2 million/year in these megacities, highlighting the need for additional research examining the human health risks from the inhalation of airborne MPs.


Subject(s)
Microplastics , Water Pollutants, Chemical , China , Cities , Environmental Monitoring , Humans , Plastics , Water Pollutants, Chemical/analysis
11.
Cancer Manag Res ; 13: 2909-2915, 2021.
Article in English | MEDLINE | ID: mdl-33833574

ABSTRACT

PURPOSE: To explore the application of the neobladder-urethral drag-and-bond anastomosis technique in laparoscopic radical cystectomy (LRC) with ileal orthotopic neobladder (IONB) reconstruction. PATIENTS AND METHODS: This is a retrospective cohort study on a procedure performed by a single surgeon. From January 2014 to December 2018, we identified 43 male bladder cancer patients who received LRC with IONB reconstruction. These patients were divided into two groups, with 22 patients undergoing neobladder-urethral drag-and-bond anastomosis (NUDA) and 21 patients undergoing neobladder-urethral anastomosis under laparoscopy (NUAL). Anastomosis time, catheter removal time, postvoid residual (PVR), maximum urinary flow rate (Q-max), urine leakage and anastomotic stenosis were used to evaluate the simplicity and surgical effect of the two groups. RESULTS: Both groups demonstrated similar tumor characteristics. A significant difference in neobladder-urethral anastomosis time was found between the NUDA group and the NUAL group (14.6 ± 0.4 vs 70 ± 2.5 min, P<0.0001), and there was no significant difference in other characteristics. CONCLUSION: The neobladder-urethral drag-and-bond anastomosis technique in LRC and IONB reconstruction, with its shorter learning curve, was easier and more convenient than neobladder-urethral anastomosis under laparoscopy.

12.
Environ Technol ; 42(9): 1452-1460, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31539312

ABSTRACT

Biofilms play an important role in degradation, transformation and assimilation of anthropogenic pollutants in aquatic ecosystems. In this study, we assembled a tubular bioreactor containing a biofilm substrate and aeration device, which was introduced into mesocosms to explore the effects of bioreactor on physicochemical and microbial characteristics of a hypereutrophic urban river. The biofilm bioreactor greatly improved water quality, especially by decreasing dissolved inorganic nitrogen (DIN) concentrations, suggesting that biofilms were the major sites of nitrification and denitrification with an oxygen concentration gradient. The biofilm bioreactor increased the abundance of planktonic bacteria, whereas diversity of the planktonic microbial community decreased. Sequencing revealed that Proteobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria were the four predominant phyla in the planktonic microbial community, and the presence of the biofilm bioreactor increased the relative abundance of Proteobacteria. Variations in microbial communities were most strongly affected by the presence of the biofilm bioreactor, as indicated by principal component analysis (PCA) and redundancy analysis (RDA). This study provides valuable insights into changes in ecological characteristics associated with self-purification processes in hypereutrophic urban rivers, and may be of important for the application of biofilm bioreactor in natural urban river.


Subject(s)
Microbiota , Rivers , Biofilms , Bioreactors , Water Quality
13.
Angew Chem Int Ed Engl ; 60(2): 680-684, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-32964629

ABSTRACT

With increasing the film area/layer, deteriorating in both smoothness and uniformity of thin-films frequently happen, which remains a barrier for making large-area quantum dot light-emitting diodes (QLEDs) by solution processes. Here, we demonstrated a facile all-solution process guided by the conical fiber array to write multi-layer ultrasmooth thin-films directly in centimeter scale. The side-by-side fibrous array helps to align surface tensions at the tri-phase contact line to facilitate large-area homogeneous deposition, which was verified by theoretical simulation. The Laplace pressure along individual conical fiber contributes to the steady liquid transfer. Thin-films with small roughness (<2.03 nm) and large-area (2×2 cm2 ) uniformity were prepared sequentially on the target substrate, leading to large-area high-performance QLEDs. The result offers new insights for fabricating large-area high-performance thin-film devices.

14.
Int J Mol Sci ; 20(3)2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30678337

ABSTRACT

Prenatal stress (PS) can increase the risk of nervous, endocrine and metabolic diseases, and immune dysfunction. Ferulic acid (FA) is a dietary phenolic acid that has pharmacological properties, including potent anti-inflammatory action. We used male, prenatally-stressed offspring rats to investigate the anti-depressive-like effects and possible anti-inflammatory mechanism of FA. We determined the animal behaviors, and the mRNA expression and concentration of inflammatory cytokines, and HPA axis. In addition, we assessed the modulation of hippocampal nuclear factor-κB (NF-κB) activation, neuronal nitric oxide synthase (nNOS) and glucocorticoid receptors (GR) expression via western blotting and immunohistochemistry. Administration of FA (12.5, 25, and 50 mg/kg/day, i.g.) for 28 days markedly increased sucrose intake, and decreased immobility time and total number of crossings, center crossings, rearing, and grooming in the male PS offspring. FA significantly reduced IL-6, IL-1ß, and TNF-α concentration and increased IL-10 concentration in male, prenatally-stressed offspring, stimulated by the NF-κB pathway. In addition, FA inhibited interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α), and increased interleukin-10 (IL-10) mRNA and protein expression. Furthermore, FA markedly decreased the serum adrenocorticotropin (ACTH) and corticosterone concentration by the increase of GR protein expression. Taken together, this study revealed that FA has anti-depressive-like effects in male, prenatally-stressed offspring, partially due to its anti-inflammatory activity and hypothalamic-pituitary-adrenal (HPA) axis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coumaric Acids/therapeutic use , Depression/drug therapy , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Prenatal Exposure Delayed Effects/drug therapy , Stress, Psychological/complications , Adrenocorticotropic Hormone/blood , Animals , Anti-Inflammatory Agents/pharmacology , Coumaric Acids/administration & dosage , Cytokines/metabolism , Depression/etiology , Female , Male , NF-kappa B/metabolism , Nitric Oxide Synthase Type I/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism
15.
Langmuir ; 34(26): 7776-7783, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29889531

ABSTRACT

Surfactant-free microemulsions (SFMEs) are a unique kind of microemulsion, which form from immiscible fluids (i.e., oil and water phases) in the presence of amphi-solvents rather than traditional surfactants. In comparison with traditional surfactant-based microemulsions (SBMEs), SFMEs have received much less attention, and the current understanding of the unique system is very limited. Herein, we report a SFME consisting of the hydrophobic ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), the protic IL diethylammonium formate (DEAF), and water, in which the bmimPF6 and DEAF are used as the oil phase and amphi-solvent, respectively. Three kinds of microstructures, namely, water-in-bmimPF6 (W/IL), bicontinuous (BC), and bmimPF6-in-water (IL/W), are identified for the SFME, using cyclic voltammetry, cryo-TEM, and DLS techniques. Especially, the volumetric and surface free energy properties of the SFME are investigated by excess molar volume ( VmE) and surface tension (γ) measurements, and they are found to be similar to those of SBMEs. Discontinuous changes in VmE and γ with the system compositions are observed as the system microstructures change, which can be used to identify the structural transition of SFMEs. We think this study provides a better understanding of SFME features.

16.
RSC Adv ; 8(3): 1371-1377, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35540868

ABSTRACT

It has been demonstrated that in the absence of traditional surfactants, microemulsions can form from a ternary mixture of oil, water, and an amphi-solvent. These microemulsions are called surfactant-free microemulsions (SFMEs). To date, only a small number of SFME systems have been reported, and the current understanding of SFMEs is very limited. Herein, we report an SFME consisting of isopentyl acetate (IA), n-propanol, and water, in which IA (a simple ester compound) and n-propanol are used as the oil phase and amphi-solvent, respectively. The microstructures and structural transition of the SFME were investigated by cyclic voltammetry, fluorescence spectroscopy, and UV-visible spectroscopy techniques. Moreover, three kinds of microstructures, namely, oil-in-water (O/W), bicontinuous (BC), and water-in-oil (W/O), have been identified in the SFME, which are directly verified by cryo-TEM observations. A change in the composition of the SFME may lead to a structural transition from O/W through BC to W/O or vice versa, which is similar to the case of traditional surfactant-based microemulsions (SBMEs). To the best of our knowledge, this is the first time that the microstructures and structural transition of an SFME obtained using a simple ester compound as the oil phase have been identified.

17.
J Colloid Interface Sci ; 505: 816-823, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28672261

ABSTRACT

Hierarchical flower-like Mg2Al-Cl LDH microspheres were synthesized using a reverse surfactant-free microemulsion (SFME) route at a low temperature (∼25°C), and characterized by XRD, TEM, SEM, FT-IR, TG, N2 adsorption/desorption, and elemental analyses. The SFME used consists of n-hexane, isopropanol, and water. The so-obtained flower-like microspheres are constructed with LDH nanosheets with ∼10nm thickness. After destroyed by calcination, their crystal structure and flower-like morphology can be reconstructed by rehydration. The flower-like LDH and its calcined product (CLDH) have large specific surface areas being ∼84.3 and 163.9m2g-1, respectively. The sorption of methyl orange (MO) on the LDH and CLDH were determined, showing high MO sorption capacities of ∼559 and 1112gg-1, respectively, which are obviously higher than those reported for conventional LDHs and CLDHs. Possible mechanisms for the flower-like microsphere formation and the MO sorption are discussed. Our results demonstrate that, like traditional surfactant-based microemulsions, SFMEs as microreactors or templates can be used to synthesize nanomaterials. The hierarchical flower-like LDH microspheres and their calcined product have potential applications such as in the treatment of organic waste water.

18.
Soft Matter ; 13(10): 2067-2074, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28217785

ABSTRACT

Generally, surfactants (or amphiphiles) are believed to be necessary components of microemulsions. However, it has been demonstrated that, in the absence of traditional surfactants, microemulsions can also form from a ternary system of two immiscible fluids (i.e., oil and water phases) and an amphi-solvent, but the current understanding of such surfactant-free microemulsions (SFMEs) is very limited. Herein, we report an SFME consisting of the hydrophobic ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), the protic IL propylamine nitrate (PAN), and water, in which bmimPF6 and PAN are used as the oil phase and the amphi-solvent, respectively. The microstructures and structural transitions of the SFME were investigated using cyclic voltammetry, fluorescence spectroscopy, and ultraviolet-visible spectroscopy. The SFME exhibited water-in-bmimPF6 (W/IL), bicontinuous (BC), and bmimPF6-in-water (IL/W) microstructures, depending on the composition of the ternary system, similar to the case of traditional surfactant-based microemulsions (SBMEs). The three kinds of microstructures were confirmed by cryogenic transmission electron microscopy (cryo-TEM) observations. To the best of our knowledge, this is the first report on SFMEs composed of two ILs as components, especially where one is used as the amphi-solvent.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(4): 946-50, 2015 Apr.
Article in Japanese | MEDLINE | ID: mdl-26197580

ABSTRACT

Three-dimensional fluorescence parameters can reflect classification, properties and content change of pollutants in wastewater treatment. In the present paper, by using three-dimensional fluorescence characteristic analysis, comparative analysis of conventional organic pollutants such as COD, TN and TP, and three dimensional fluorescence spectrum analysis, the classification and content of dissolved organic pollutants were identified. We studied fluorescence spectra, fluorescence peak (R. U.), fluorescence index (FI), humification index (HIX) of DOM's four components in the entrance and effluent water and interstitial water, as well as the correlation between these four components and COD, TN and TP. The results showed that the position and intensity of the characteristic fluorescence peak center changed significantly before and after sewage treatment, indicating that the relative composition and content of the organic wastewater varied with wastewater treatment. Furthermore, the test results presented that humic-like composition was not degraded significantly, while protein-like composition was degraded significantly. And the protein-like component and COD, TN and TP presented significant positive correlation. This paper analyzed the fluorescence characteristics changes of dissolved organic matter in sewage treatment by using three-dimensional fluorescence spectrometry, and discussed the feasibility of three-dimensional fluorescence technique applied for description of dissolved organic pollutant degradation rule in the wastewater treatment process.


Subject(s)
Organic Chemicals/analysis , Wastewater/chemistry , Water Purification , Wetlands , Fluorescence , Spectrometry, Fluorescence , Water Pollutants, Chemical
20.
Photochem Photobiol Sci ; 14(4): 693-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25590051

ABSTRACT

The widespread presence of fluoroquinolone antibiotics (FQs) in natural ecosystems is a health hazard for humans and other living organisms. In this work, the photochemical degradation process of two antibiotics in the presence of Fe(III) and marine microalgae has been studied. Two fluoroquinolone (FQ) antibiotics, enrofloxacin (ENR) and ciprofloxacin hydrochloride (CIP), and two marine microalgae, Platymonas subcordiformis and Isochrysis galbana, were investigated under irradiation with a high-pressure mercury lamp (HPML) in a laboratory-scale experiment. The effects of the initial concentration of antibiotics on the degradation of these two FQs in Fe(III)-algae suspensions were also investigated. On the basis of the information in this study, compared to other systems, the efficiency of photo-degradation of the two FQs is better at lower FQ concentrations in the Fe(III)-algae system. Moreover, the low initial concentration of antibiotics benefits the photochemical process of antibiotics. This work demonstrated that the Fe(III)-algae system is an interesting and valuable research area and could be considered as a promising photochemical system for seawater remediation.


Subject(s)
Anti-Bacterial Agents/chemistry , Ciprofloxacin/chemistry , Ferric Compounds/chemistry , Fluoroquinolones/chemistry , Microalgae/chemistry , Suspensions/chemistry , Chlorophyll/chemistry , Darkness , Enrofloxacin , Photolysis , Singlet Oxygen/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...