Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Arch Gerontol Geriatr ; 123: 105435, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38583266

ABSTRACT

BACKGROUND: Recent research reported that frailty was prevalent among adults with chronic kidney disease (CKD) in clinical trials, and monocytes illustrated a similar difference in these two diseases compared to the normal. However, the scientific evidence for a causal relationship between these two diseases was lacking, with further exploration into whether monocytes co-regulate them. METHODS: We aimed to integrate large-scale Mendelian randomization (MR) and single-cell transcriptome analysis to determine whether there was a causal relationship between frailty and CKD (Bidirectional two-sample Mendelian determined the causal direction), whether monocytes impacted them, and whether the two diseases shared genetic variation sites. Based on 441 Genome-wide association study datasets, this study utilized five MR methods, multiple sensitivity analysis, and corresponding single-cell transcriptome datasets as proof. RESULTS: The association between frailty and CKD was significantly causal, and frailty increased the risk of CKD in patients (OR (95 %CI): 3.5597 (1.8369-6.8982), p = 0.000168909). The exposure monocyte can increase the risk of frailty and CKD in patients, especially with high expression of HLA genes in these cells. The existing two-sample MR results cannot reject the hypothesis that monocytes increase the risk of CKD by inducing frailty. rs9275271' 1mb genetic location above and below had been proven to be an effective genetic space for both frailty and CKD. CONCLUSION: We conducted the largest MR to date on frailty, monocyte, and CKD, and found a significant causal association between frailty and CKD, with the single-cell analysis confirmed. The exposure monocytes increased the risk of frailty and CKD, particularly with high expression of HLA genes in these cells. We identified a potential common genetic variant space, rs9275271, associated with frailty and CKD, providing insights into the genetic basis of these conditions.


Subject(s)
Frailty , Genome-Wide Association Study , Mendelian Randomization Analysis , Monocytes , Renal Insufficiency, Chronic , Single-Cell Analysis , Humans , Monocytes/metabolism , Renal Insufficiency, Chronic/genetics , Frailty/genetics , Single-Cell Analysis/methods , Aged , Male , Female
2.
BMC Infect Dis ; 24(1): 280, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438963

ABSTRACT

BACKGROUND: The causal association between gut microbiome and HIV infection remains to be elucidated. We conducted a two-sample mendelian randomization analysis to estimate the causality between gut microbiome and HIV infection. METHODS: Publicly released genome-wide association studies summary data were collected to perform the mendelian analysis. The GWAS summary data of gut microbiome was retrieved from the MiBioGen consortium, which contains 18 340 samples from 24 cohorts. GWAS summary data of HIV infection was collected from the R5 release of FinnGen consortium, including 357 HIV infected cases and 218 435 controls. The SNPs were selected as instrumental variables according to our selection rules. And SNPs with a F-statistics less than ten were regarded as weak instrumental variables and excluded. Mendelian randomization analysis was conducted by five methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weighted mode, and simple mode. The Cochran's Q test and MR-Egger intercept test were performed to identify heterogeneity and pleiotropy. Leave-one-out analysis were used to test the sensitivity of the results. RESULTS: Fifteen gut microbiota taxa showed causal effects on HIV infection according to the MR methods. Four taxa were observed to increase the risk of HIV infection, including Ruminococcaceae (OR: 2.468[1.043, 5.842], P: 0.039), Ruminococcaceae UCG005 (OR: 2.051[1.048, 4.011], P: 0.036), Subdoligranulum (OR: 3.957[1.762, 8.887], P < 0.001) and Victivallis (OR: 1.605[1.012, 2.547], P=0.044). Erysipelotrichaceae was protective factor of HIV infection (OR: 0.278[0.106, 0.731], P < 0.001) and Methanobrevibacter was also found to be associated with reduced risk of HIV infection (OR: 0.509[0.265, 0.980], P=0.043). Horizontal pleiotropy was found for Fusicatenibacter (P<0.05) according to the MR-Egger regression intercept analysis. No heterogeneity was detected. CONCLUSION: Our results demonstrate significant causal effects of gut microbiome on HIV infection. These findings facilitate future studies to develop better strategies for HIV prophylaxis through gut microbiome regulation. Further explorations are also warranted to dissect the mechanism of how gut microbiome affects HIV susceptibility.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Humans , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study , Causality , Nonoxynol
3.
Heliyon ; 10(3): e25570, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352751

ABSTRACT

The recurrence or resistance to treatment of primary liver cancer (PLL) is significantly related to the heterogeneity present within the tumor. In this study, we integrated prognosis risk score, mRNAsi index, and immune characteristics clustering to classify patients. The four subtypes obtained from the combined classification are associated with PLC's prognosis and drug response. In these subtypes, we observed mRNAsiH_ICCA subtype, the intersection between high mRNAsi and immune characteristics clustering A, had the worst prognosis. Specifically, immune characteristics clustering B (ICC_B) had high drug sensitivity in most drugs regardless of the value of mRNAsi. On the other hand, patients with low mRNAsi responded better to ten drugs including KU-55933 and NU7441, while patients with high mRNAsi might benefit from drugs like Leflunomide. By matching the specific characteristics of each combined subtype with the drug-induced cell line expression profile, we identified a group of potential therapeutic drugs that might regulate the expression of disease signature genes. We developed a feasible multiple combined typing strategy, hoping to guide therapeutic selection and promote the development of precision medicine.

4.
Mol Biotechnol ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261152

ABSTRACT

Recent researches reported that neurotrophins can promote glioma growth/invasion but the relevant model for predicting patients' survival in Lower-Grade Gliomas (LGGs) lacked. In this study, we adopted univariate Cox analysis, LASSO regression, and multivariate Cox analysis to determine a signature including five neurotrophin-related genes (NTGs), CLIC1, SULF2, TGIF1, TTF2, and WEE1. Two-sample Mendelian Randomization (MR) further explored whether these prognostic-related genes were genetic variants that increase the risk of glioma. A total of 1306 patients have been included in this study, and the results obtained from the training set can be verified by four independent validation sets. The low-risk subgroup had longer overall survival in five datasets, and its AUC values all reached above 0.7. The risk groups divided by the NTGs signature exhibited a distinct difference in targeted therapies from the copy-number variation, somatic mutation, LGG's surrounding microenvironment, and drug response. MR corroborated that TGIF1 was a potential causal target for increasing the risk of glioma. Our study identified a five-NTGs signature that presented an excellent survival prediction and potential biological function, providing new insight for the selection of LGGs therapy.

5.
J Cancer Res Clin Oncol ; 150(2): 37, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279056

ABSTRACT

BACKGROUND: Recent research reported that mononuclear phagocyte system (MPS) can contribute to immune defense but the classification of head and neck squamous cell carcinoma (HNSCC) patients based on MPS-related multi-omics features using machine learning lacked. METHODS: In this study, we obtain marker genes for MPS through differential analysis at the single-cell level and utilize "similarity network fusion" and "MoCluster" algorithms to cluster patients' multi-omics features. Subsequently, based on the corresponding clinical information, we investigate the prognosis, drugs, immunotherapy, and biological differences between the subtypes. A total of 848 patients have been included in this study, and the results obtained from the training set can be verified by two independent validation sets using "the nearest template prediction". RESULTS: We identified two subtypes of HNSCC based on MPS-related multi-omics features, with CS2 exhibiting better predictive prognosis and drug response. CS2 represented better xenobiotic metabolism and higher levels of T and B cell infiltration, while the biological functions of CS1 were mainly enriched in coagulation function, extracellular matrix, and the JAK-STAT signaling pathway. Furthermore, we established a novel and stable classifier called "getMPsub" to classify HNSCC patients, demonstrating good consistency in the same training set. External validation sets classified by "getMPsub" also illustrated similar differences between the two subtypes. CONCLUSIONS: Our study identified two HNSCC subtypes by machine learning and explored their biological difference. Notably, we constructed a robust classifier that presented an excellent classifying prediction, providing new insight into the precision medicine of HNSCC.


Subject(s)
Head and Neck Neoplasms , Multiomics , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Mononuclear Phagocyte System , Immunotherapy , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Prognosis , Tumor Microenvironment
6.
Front Cell Infect Microbiol ; 13: 1260068, 2023.
Article in English | MEDLINE | ID: mdl-38035339

ABSTRACT

Objectives: Recent studies pointed out that gut microbiome dysbiosis in HIV infection was possibly confounded in men who have sex with men (MSM), but there is a lack of evidence. It also remained unclear how MSM-associated gut microbiome dysbiosis affected human health. This study aimed to compare the differences in gut microbiome changes between HIV and MSM and reveal the potential impacts of MSM-associated gut microbiome dysbiosis on the immune system. Methods: We searched available studies based on the PubMed database, and all gut microbiome changes associated with HIV infection and MSM were extracted from the enrolled studies. The gutMgene database was used to identify the target genes and metabolites of the gut microbiome. Bioinformatic technology and single-cell RNA sequencing data analysis were utilized to explore the impacts of these gut microbiome changes on human immunity. Results: The results showed significant overlaps between the gut microbiome associated with HIV and that of MSM. Moreover, bioinformatic analysis revealed that gut microbiome dysbiosis in MSM had an impact on several pathways related to immunity, including the IL-17 signaling pathway and Th17 cell differentiation. Additionally, target genes of MSM-associated gut microbiome were found to be highly expressed in monocytes and lymphocytes, suggesting their potential regulatory role in immune cells. Furthermore, we found that MSM-associated gut microbiome could produce acetate and butyrate which were reported to increase the level of inflammatory factors. Conclusion: In conclusion, this study highlighted that MSM-associated gut microbiome dysbiosis might increase the risk of HIV acquisition by activating the immune system. Further studies are expected to elucidate the mechanism by which gut microbiome dysbiosis in MSM modulates HIV susceptibility.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Infections , Sexual and Gender Minorities , Male , Humans , HIV Infections/complications , Gastrointestinal Microbiome/genetics , Homosexuality, Male , Dysbiosis , Homeostasis
7.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895143

ABSTRACT

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Increasing evidence highlights the significant role of immune-related genes (IRGs) in ACC progression and immunotherapy, but the research is still limited. Based on the Cancer Genome Atlas (TCGA) database, immune-related molecular subtypes were identified by unsupervised consensus clustering. Univariate Cox analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression were employed to further establish immune-related gene signatures (IRGS). An evaluation of immune cell infiltration, biological function, tumor mutation burden (TMB), predicted immunotherapy response, and drug sensitivity in ACC patients was conducted to elucidate the applicative efficacy of IRGS in precision therapy. ACC patients were divided into two molecular subtypes through consistent clustering. Furthermore, the 3-gene signature (including PRKCA, LTBP1, and BIRC5) based on two molecular subtypes demonstrated consistent prognostic efficacy across the TCGA and GEO datasets and emerged as an independent prognostic factor. The low-risk group exhibited heightened immune cell infiltration, TMB, and immune checkpoint inhibitors (ICIs), associated with a favorable prognosis. Pathways associated with drug metabolism, hormone regulation, and metabolism were activated in the low-risk group. In conclusion, our findings suggest IRGS can be used as an independent prognostic biomarker, providing a foundation for shaping future ACC immunotherapy strategies.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Humans , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/therapy , Prognosis , Cluster Analysis , Databases, Factual , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/therapy , Tumor Microenvironment
8.
Cells ; 12(5)2023 02 27.
Article in English | MEDLINE | ID: mdl-36899891

ABSTRACT

Increasing evidence confirms that tumor microenvironment (TME) can influence tumor progression and treatment, but TME is still understudied in adrenocortical carcinoma (ACC). In this study, we first scored TME using the xCell algorithm, then defined genes associated with TME, and then used consensus unsupervised clustering analysis to construct TME-related subtypes. Meanwhile, weighted gene co-expression network analysis was used to identify modules correlated with TME-related subtypes. Ultimately, the LASSO-Cox approach was used to establish a TME-related signature. The results showed that TME-related scores in ACC may not correlate with clinical features but do promote a better overall survival. Patients were classified into two TME-related subtypes. Subtype 2 had more immune signaling features, higher expression of immune checkpoints and MHC molecules, no CTNNB1 mutations, higher infiltration of macrophages and endothelial cells, lower tumor immune dysfunction and exclusion scores, and higher immunophenoscore, suggesting that subtype 2 may be more sensitive to immunotherapy. 231 modular genes highly relevant to TME-related subtypes were identified, and a 7-gene TME-related signature that independently predicted patient prognosis was established. Our study revealed an integrated role of TME in ACC and helped to identify those patients who really responded to immunotherapy, while providing new strategies on risk management and prognosis prediction.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Humans , Endothelial Cells , Tumor Microenvironment , Immunotherapy
9.
Cancers (Basel) ; 14(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36358764

ABSTRACT

Although N7-methylguanosine (m7G) modification serves as a tumor promoter in bladder cancer (BLCA), the comprehensive role of m7G-related characterization in BLCA remains unclear. In this study, we systematically evaluated the m7G-related clusters of 760 BLCA patients through consensus unsupervised clustering analysis. Next, we investigated the underlying m7G-related genes among these m7G-related clusters. Univariate Cox and LASSO regressions were used for screening out prognostic genes and for reducing the dimension, respectively. Finally, we developed a novel m7G-related scoring system via the GSVA algorithm. The correlation between tumor microenvironment, prediction of personalized therapies and this m7G-related signature was gradually revealed. We first identified three m7G-related clusters and 1108 differentially expressed genes relevant to the three clusters. Based on the profile of 1108 genes, we divided BLCA patients into two clusters, which were quantified by our established m7G-related scoring system. Patients with higher m7G-related scores tended to have a better OS and more chances to benefit from immunotherapy. A significantly negative connection between sensitivity to classic chemotherapeutic drugs and m7G-related signature was uncovered. In summary, our data show that m7G-related characterization of BLCA patients can be of value for prognostic stratification and for patient-oriented therapeutic options, designing personalized treatment strategies in the preclinical setting.

10.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233273

ABSTRACT

Although some biomarkers have been used to predict prognosis of lower-grade gliomas (LGGs), a pathway-related signature associated with immune response has not been developed. A key signaling pathway was determined according to the lowest adjusted p value among 50 hallmark pathways. The least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox analyses were performed to construct a pathway-related gene signature. Somatic mutation, drug sensitivity and prediction of immunotherapy analyses were conducted to reveal the value of this signature in targeted therapies. In this study, an allograft rejection (AR) pathway was considered as a crucial signaling pathway, and we constructed an AR-related five-gene signature, which can independently predict the prognosis of LGGs. High-AR LGG patients had higher tumor mutation burden (TMB), Immunophenscore (IPS), IMmuno-PREdictive Score (IMPRES), T cell-inflamed gene expression profile (GEP) score and MHC I association immunoscore (MIAS) than low-AR patients. Most importantly, our signature can be validated in four immunotherapy cohorts. Furthermore, IC50 values of the six classic chemotherapeutic drugs were significantly elevated in the low-AR group compared with the high-AR group. This signature might be regarded as an underlying biomarker in predicting prognosis for LGGs, possibly providing more therapeutic strategies for future clinical research.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Glioma/genetics , Glioma/metabolism , Glioma/therapy , Humans , Immunity , RNA, Messenger/genetics
11.
Genes (Basel) ; 13(9)2022 09 08.
Article in English | MEDLINE | ID: mdl-36140771

ABSTRACT

Although many biomarkers associated with coronavirus disease 2019 (COVID-19) were found, a novel signature relevant to immune cells has not been developed. In this work, the "CIBERSORT" algorithm was used to assess the fraction of immune infiltrating cells in GSE152641 and GSE171110. Key modules associated with important immune cells were selected by the "WGCNA" package. The "GO" enrichment analysis was used to reveal the biological function associated with COVID-19. The "Boruta" algorithm was used to screen candidate genes, and the "LASSO" algorithm was used for collinearity reduction. A novel gene signature was developed based on multivariate logistic regression analysis. Subsequently, M0 macrophages (PRAUC = 0.948 in GSE152641 and PRAUC = 0.981 in GSE171110) and neutrophils (PRAUC = 0.892 in GSE152641 and PRAUC = 0.960 in GSE171110) were considered as important immune cells. Forty-three intersected genes from two modules were selected, which mainly participated in some immune-related activities. Finally, a three-gene signature comprising CLEC4D, DUSP13, and UNC5A that can accurately distinguish COVID-19 patients and healthy controls in three datasets was constructed. The ROCAUC was 0.974 in the training set, 0.946 in the internal test set, and 0.709 in the external test set. In conclusion, we constructed a three-gene signature to identify COVID-19, and CLEC4D, DUSP13, and UNC5A may be potential biomarkers for COVID-19 patients.


Subject(s)
COVID-19 , Computational Biology , COVID-19/genetics , Humans , Machine Learning
12.
J Healthc Eng ; 2022: 8704127, 2022.
Article in English | MEDLINE | ID: mdl-35535221

ABSTRACT

Pyroptosis plays a critical role in the immune response to immune checkpoint inhibitors (ICIs) by mediating the tumor immune microenvironment. However, the impact of pyroptosis-related biomarkers on the prognosis and efficacy of ICIs in patients with lower-grade gliomas (LGGs) is unclear. An unsupervised clustering analysis identified pyroptosis-related subtypes (PRSs) based on the expression profile of 47 pyroptosis-related genes in The Cancer Genome Atlas-LGG cohort. A PRS gene signature was established using univariate Cox regression, random survival forest, least absolute shrinkage and selection operator, and stepwise multivariable Cox regression analyses. The predictive power of this signature was validated in the Chinese Glioma Genome Atlas database. We also investigated the differences between high- and low-risk groups in terms of the tumor immune microenvironment, tumor mutation, and response to target therapy and ICIs. The PRS gene signature comprised eight PRS genes, which independently predicted the prognosis of LGG patients. High-risk patients had a worse overall survival than did the low-risk patients. The high-risk group also displayed a higher proportion of M1 macrophages and CD8+ T cells and higher immune scores, tumor mutational burden, immunophenoscore, IMmuno-PREdictive Score, MHC I association immune score, and T cell-inflamed gene expression profile scores, but lower suppressor cells scores, and were more suitable candidates for ICI treatment. Higher risk scores were more frequent in patients who responded to ICIs using data from the ImmuCellAI website. The presently established PRS gene signature can be validated in melanoma patients treated with real ICI treatment. This signature is valuable in predicting prognosis and ICI treatment of LGG patients, pending further prospective verification.


Subject(s)
Glioma , Immune Checkpoint Inhibitors , CD8-Positive T-Lymphocytes , Glioma/drug therapy , Glioma/genetics , Humans , Immune Checkpoint Inhibitors/therapeutic use , Prognosis , Pyroptosis/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...