Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Phytomedicine ; 128: 155377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503154

ABSTRACT

BACKGROUND: The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS: The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS: DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION: In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.


Subject(s)
Cell Proliferation , Neoplastic Stem Cells , Pancreatic Neoplasms , Animals , Humans , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Evodia/chemistry , Gemcitabine , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Quinazolines/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcription Factor CHOP/metabolism , Xenograft Model Antitumor Assays
2.
World Neurosurg ; 179: e387-e396, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652134

ABSTRACT

OBJECTIVE: Relapse of the central nervous system (CNS) is a rare but fatal complication in diffuse large B-cell lymphoma (DLBCL). The purpose of this study is to learn how to identify high-risk patients and take effective preventive measures. METHODS: We retrospectively analyzed 1,290 adult patients with DLBCL at Peking University Cancer Hospital and Shanxi Bethune Hospital between 2010 and 2020. RESULTS: There were 55 patients with CNS relapse who had a median follow-up of 5 years. The risk of CNS relapse was 1.58% in the low-risk group, 5.66% in the moderate-risk group, and 11.67% in the high-risk group based on CNS International Prognostic Index (CNS-IPI). We found that CNS-IPI and testicular involvement were risk factors for CNS relapse, with OR 1.913 (95% CI: 1.036∼3.531; P = 0.038) versus. OR 3.526 (95% CI: 1.335∼9.313; P = 0.011), respectively. Intrathecal MTX and/or cytarabine prophylaxis was used in 166 patients (13.94%), intravenous (IV) high-dose methotrexate (HD-MTX) prophylaxis in 8 patients (0.67%), and intrathecal plus intravenous prophylaxis in 15 patients (1.26%). There was no significant difference in CNS relapse risk between IT, HD-MTX, and no prophylaxis recipients (12.7% vs. 0% vs. 23.6%, respectively, P = 0.170). The risk of CNS relapse was similar whether or not patients accepted prophylaxis (5-year risk 4.1% vs. 2.2%, P = 0.140). CONCLUSIONS: Central nervous system (CNS) relapse is associated with high risk CNS-IPI and testicular involvement. Therefore, it is necessary to pursue novel prophylactic strategies for CNS relapse.


Subject(s)
Central Nervous System Neoplasms , Lymphoma, Large B-Cell, Diffuse , Adult , Humans , Retrospective Studies , Neoplasm Recurrence, Local/pathology , Central Nervous System Neoplasms/pathology , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Methotrexate/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Central Nervous System , Rituximab , Cyclophosphamide
3.
Free Radic Biol Med ; 204: 301-312, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37217090

ABSTRACT

Colorectal cancer (CRC) is the third most common cause of cancer mortality worldwide. Approximately 40% of CRC patients are KRAS sequence variation, including KRAS G13D mutation (KRASG13D) CRC patients, accounting for approximately 8% of all KRAS mutations in CRC patients and showing little benefit from anti-EGFR therapy. Therefore, there is an urgent need for new and effective anticancer agents in patients with KRASG13D CRC. Here, we identified a natural product, erianin, that directly interacted with purified recombinant human KRASG13D with a Kd of 1.1163 µM, which also significantly improve the thermal stability of KRASG13D. The cell viability assay showed that KRASG13D cells were more sensitive to erianin than KRASWT or KRASG12V cells. In vitro, results showed that erianin suppressed the migration, invasion and epithelial-mesenchymal transition (EMT) of KRASG13D CRC cells. Furthermore, erianin induced ferroptosis, as evidenced by the accumulation of Fe2+ and reactive oxygen species (ROS), lipid peroxidation, and changes in the mitochondrial morphology of KRASG13D CRC cells. Interestingly, we also found that erianin-induced ferroptosis was accompanied by autophagy. Moreover, the occurrence of erianin-induced ferroptosis is reversed by autophagy inhibitors (NH4Cl and Bafilomycin A1) and ATG5 knockdown, suggesting that erianin-induced ferroptosis is autophagy-dependent. In addition, we evaluated the inhibition of tumor growth and metastasis by erianin in vivo using a subcutaneous tumor model and a spleen-liver metastasis model, respectively. Collectively, these data provide novel insights into the anticancer activity of erianin, which is valuable for the further discussion and investigation of the use of erianin in clinical anticancer chemotherapy for KRASG13D CRC.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Ferroptosis/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Autophagy
4.
Life Sci ; 324: 121715, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37100377

ABSTRACT

AIMS: We aimed to evaluate the effect of periplocin on inhibiting hepatocellular carcinoma (HCC) and further determine its mechanisms. MAIN METHODS: Cytotoxic activity of periplocin against HCC cells was tested by CCK-8 and colony formation assays. The antitumor effects of periplocin were evaluated in human HCC SK-HEP-1 xenograft and murine HCC Hepa 1-6 allograft mouse models. Flow cytometry was used to measure cell cycle distribution, apopotosis, and the number of myeloid-derived suppressor cells (MDSCs). Hoechst 33258 dye was applied to observe the nuclear morphology. Network pharmacology was performed to predict possible signaling pathways. Drug affinity responsive target stability assay (DARTS) was used to evaluate AKT binding of periplocin. Western blotting, immunohistochemistry, and immunofluorescence were used to examine the protein expression levels. KEY FINDING: Periplocin inhibited cell viability with IC50 values from 50 nM to 300 nM in human HCC cells. Periplocin disrupted cell cycle distribution and promoted cell apoptosis. Moreover, AKT was predicted as the target of periplocin by network pharmacology, which was confirmed by that AKT/NF-κB signaling was inhibited in periplocin-treated HCC cells. Periplocin also inhibited the expression of CXCL1 and CXCL3, leading to decreased accumulation of MDSCs in HCC tumors. SIGNIFICANCE: These findings reveal the function of periplocin in inhibiting HCC progression by G2/M arrest, apoptosis and suppression of MDSCs accumulation through blockade of the AKT/NF-κB pathway. Our study further suggests that periplocin has the potential to be developed as an effective therapeutic agent for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Mice , Animals , Carcinoma, Hepatocellular/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Liver Neoplasms/pathology , Myeloid-Derived Suppressor Cells/metabolism , Cell Proliferation , Apoptosis , Cell Line, Tumor
5.
Blood Adv ; 7(16): 4349-4357, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37078706

ABSTRACT

Relapsed or refractory (r/r) mantle cell lymphoma (MCL) is an aggressive B-cell malignancy with a poor prognosis. Bruton tyrosine kinase (BTK) is a mediator of B-cell receptor signaling and is associated with the development of B-cell lymphomas. Patients with r/r MCL were enrolled in this phase 1/2 study and treated with orelabrutinib, a novel, highly selective BTK inhibitor. The median number of prior regimens was 2 (range, 1-4). The median age was 62 years (range, 37-73 years). Eligible patients received oral orelabrutinib 150 mg once daily (n = 86) or 100 mg twice daily (n = 20) until disease progression or unacceptable toxicity. A dose of 150 mg once daily was chosen as the preferred recommended phase 2 dose. After a median follow-up duration of 23.8 months, the overall response rate was 81.1%, with 27.4% achieving a complete response and 53.8% achieving a partial response. The median duration of response and progression-free survival were 22.9 and 22.0 months, respectively. The median overall survival (OS) was not reached, and the rate of OS at 24 months was 74.3%. Adverse events (AEs) occurring in >20% of patients were thrombocytopenia (34.0%), upper respiratory tract infection (27.4%), and neutropenia (24.5%). Grade ≥3 AEs were infrequent and most commonly included thrombocytopenia (13.2%), neutropenia (8.5%), and anemia (7.5%). Three patients discontinued treatment because of treatment-related adverse events (TRAEs), but no fatal TRAEs were reported. Orelabrutinib showed substantial efficacy and was well tolerated in patients with r/r MCL. This trial was registered at www.clinicaltrials.gov as #NCT03494179.


Subject(s)
Lymphoma, Mantle-Cell , Neutropenia , Thrombocytopenia , Adult , Humans , Middle Aged , Lymphoma, Mantle-Cell/pathology , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/adverse effects , Neutropenia/chemically induced , Thrombocytopenia/chemically induced
6.
Molecules ; 27(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36364136

ABSTRACT

In order to improve the mechanical strength and imprinting efficiency, a novel bovine serum albumin (BSA) molecularly imprinted poly(ionic liquid)/calcium alginate composite cryogel membrane (MICM) was prepared. The results of the tensile test indicated that the MICM had excellent mechanical strength which could reach up to 90.00 KPa, 30.30 times higher than the poly (ionic liquid) membrane without calcium alginate; the elongation of it could reach up to 93.70%, 8.28 times higher than the poly (ionic liquid) membrane without calcium alginate. The MICM had a very high welling ratio of 1026.56% and macropore porosity of 62.29%, which can provide effective mass transport of proteins. More remarkably, it had a very high adsorption capacity of 485.87 mg g-1 at 20 °C and 0.66 mg mL-1 of the initial concentration of BSA. Moreover, MICM also had good selective and competitive recognition toward BSA, exhibiting potential utility in protein separation. This work can provide a potential method to prepare the protein-imprinted cryogel membrane with both high mechanical strength and imprinting efficiency.


Subject(s)
Ionic Liquids , Molecular Imprinting , Cryogels , Serum Albumin, Bovine , Alginates , Molecular Imprinting/methods , Adsorption
7.
Biomed Pharmacother ; 150: 112948, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35430394

ABSTRACT

Diabetic ulcer is a challenging complication of diabetes mellitus but current treatments cannot achieve satisfactory results. In this study, the effect of Huangbai liniment (HB) and berberine on the wound healing in high fat diet/streptozotocin injection induced diabetic rats was investigated by RNA-seq technology. HB topical treatment promoted wound healing in the diabetic patients and diabetic rats, and it affected multiple processes, of which IL-17 signalling pathway was of importance. Inhibiting IL-17a by its inhibitor or antibody remarkably facilitated wound healing and HB significantly repressed the high IL-17 expression and its downstream targets, including Cxcl1, Ccl2, Mmp3, Mmp9, G-CSF, IL1B and IL6, in diabetic wounds, promoted T-AOC, SOD activity and GSH levels; decreased the levels of nitrotyrosine and 8-OHdG; enhanced angiogenesis-related CD31, PDGF-BB and ANG1 expression; inhibited cleaved caspase-3 levels and promoted TIMP1 and TGFB1. Moreover, berberine (a major component in HB) repressed the IL-17 signalling pathway, and promoted wound healing in diabetes mellitus. This study highlights the strategy of targeting IL-17a in diabetic wounds, deepens the understanding of wound healing in diabetes mellitus in a dynamic way and reveals the characteristics of HB and berberine in promoting wound healing of type 2 diabetes mellitus.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Berberine/pharmacology , Berberine/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat , Drugs, Chinese Herbal , Humans , Interleukin-17/pharmacology , Liniments/pharmacology , Rats , Streptozocin/pharmacology , Wound Healing
8.
Mol Cancer ; 21(1): 52, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35164788

ABSTRACT

Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs. Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.


Subject(s)
Artificial Intelligence , Neoplasms , Adenosine/chemistry , Drug Discovery , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Prognosis
9.
Article in English | MEDLINE | ID: mdl-35077841

ABSTRACT

Depression is the second most common psychiatric disorder, affecting more than 340 million people of all ages worldwide. However, the mechanisms underlying the development of depression remain unclear, and existing antidepressants may cause clinical dependence and toxic side effects. Recently, emerging evidence from the fields of neuroscience, genetics, and genomics supports the modulatory role of long non-coding RNA (lncRNA) in depression. LncRNAs may mediate the pathogenesis of depression through multiple pathways, including regulating neurotransmitters and neurotrophic factors, affecting synaptic conduction, and regulating the ventriculo-olfactory neurogenic system. In addition, relying on genome-wide association study and molecular biological experiment, the possibility of lncRNA as a potential biomarker for the differential diagnosis of depression and other mental illnesses, including schizophrenia and anxiety disorders, is gradually being revealed. Thus, it is important to explore whether lncRNAs are potential therapeutic targets and diagnostic biomarkers for depression. Here, we summarize the genesis and function of lncRNAs and discuss the aberrant expression and functional roles of lncRNAs in the development, diagnosis, and therapy of depression, as well as the deficiencies and limitations of these studies. Moreover, we established a lncRNA-miRNA-mRNA-pathway-drug network of depression through bioinformatics analysis methods to deepen our understanding of the relationship between lncRNA and depression, promoting the clinical application of epigenetic research.


Subject(s)
Depression , RNA, Long Noncoding/genetics , Computational Biology , Depression/genetics , Depression/physiopathology , Epigenomics , Gene Expression Profiling , Gene Regulatory Networks , Genome-Wide Association Study , Humans , MicroRNAs/genetics , RNA, Messenger/genetics
10.
Ying Yong Sheng Tai Xue Bao ; 32(11): 4021-4028, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34898118

ABSTRACT

Planting grasses in orchards is important to maintain soil basic fertility, improve the soil ecological environment, and promote sustainable growth of fruit. However, the quantitative effects of grasses on nutrient content of orchard soil in China is unclear, as well as the mechanisms associated with higher fruit yield and quality in orchards. This meta-analysis included 62 literature published between 1990 and 2020 to quantify effects of soil depth, planting years of raw grasses, and raw grasses to the physical and chemical properties and fruit yield and quality of orchards, as well as to explore the impacts of grasses on the sustainable production of Chinese orchards. Between 1990 and 2020, compared with the non-grass orchards, the content of soil organic matter, alkali nitrogen and available phosphorus in orchard with grasses increased by 18%, 11%, and 27% respectively, and the soil bulk density was reduced by 20%. Orchard grass increased soil temperature by 23% when the temperature was below 10 ℃, and reduced soil temperature by about 8% when the temperature was above 10 ℃. Compared with annual grasses, perennial grasses (natural or artificial) significantly improved soil properties, fruit yield and quality. These findings indicated that long-term grass planting in orchards had far-reaching significance on sustainable production.


Subject(s)
Malus , Soil , Fruit/chemistry , Nitrogen/analysis , Phosphorus
12.
J Ethnopharmacol ; 266: 113443, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33022344

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chansu, dried secretions from Bufonidae, has long been used for cancer treatment as a traditional Chinese medicine. In searching for effective anti-hepatoma agents from Chansu, our preliminary drug screening found that a bufadienolide, namely 1ß-hydroxyl-arenobufagin (1ß-OH-ABF), displays anti-hepatoma activities. However, the anti-hepatoma effects and molecular mechanisms of 1ß-OH-ABF have not been defined. AIM OF THE STUDY: To evaluate the anti-hepatoma activity of 1ß-OH-ABF against liver cancer Hep3B and HepG2 cells in vitro and in vivo, as well as explore the underlying mechanisms. MATERIALS AND METHODS: The anti-proliferative effects of 1ß-OH-ABF on liver cancer Hep3B, HepG2, HuH7, SK-HEP-1 and normal hepatocyte LO2 cells were examined by MTT assay and colony formation assay. Hoechst 33258 staining and Annexin V-FITC/PI staining assay were used to analyze apoptosis induced by 1ß-OH-ABF. The collapse of the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining assay. Western blotting was used to examine the expression levels of targeted proteins. The role of mTOR in 1ß-OH-ABF-induced apoptosis was investigated using small interfering RNA (siRNA) transfection. Zebrafish xenograft model was established to evaluate the anti-hepatoma effects of 1ß-OH-ABF in vivo. RESULTS: We found that 1ß-OH-ABF inhibits the proliferation of Hep3B, HepG2, HuH7, SK-HEP-1 cells but has little cytotoxicity towards LO2 cells. 1ß-OH-ABF induces mitochondria dysfunction and triggers mitochondria apoptotic pathway, which is accompanied by the loss of ΔΨm, upregulation and translocation of Bax, as well as cleavages of caspase-9, caspase-3 and PARP. Mechanistically, 1ß-OH-ABF markedly decreases the expression level of p-AKT/AKT and p-mTOR (Ser2248 and Ser2481)/mTOR in a time-dependent manner. Inhibition of mTOR by siRNA strengthens 1ß-OH-ABF-mediated apoptosis. Critically, 1ß-OH-ABF shows a marked in vivo anti-hepatoma effect on human Hep3B cell xenografts in zebrafish model. CONCLUSION: 1ß-OH-ABF induces mitochondrial apoptosis through the suppression of mTOR signaling in vitro and in vivo, indicating that 1ß-OH-ABF may serve as a potential agent for the treatment of liver cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Bufanolides/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Apoptosis/drug effects , Bufanolides/chemistry , Bufanolides/isolation & purification , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver Neoplasms/pathology , Mitochondria/drug effects , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays , Zebrafish
13.
Eur J Pharmacol ; 887: 173379, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758567

ABSTRACT

Bufadienolides are cardioactive C24 steroids with an α-pyrone ring at position C17. In the last ten years, accumulating studies have revealed the anticancer activities of bufadienolides and their underlying mechanisms, such as induction of autophagy and apoptosis, cell cycle disruption, inhibition of angiogenesis, epithelial-mesenchymal transition (EMT) and stemness, and multidrug resistance reversal. As Na+/K+-ATPase inhibitors, bufadienolides have inevitable cardiotoxicity. Short half-lives, poor stability, low plasma concentration and oral bioavailability in vivo are obstacles for their applications as drugs. To improve the drug potency of bufadienolides and reduce their side effects, prodrug strategies and drug delivery systems such as liposomes and nanoparticles have been applied. Therefore, systematic and recapitulated information about the antitumor activity of bufadienolides, with special emphasis on the molecular or cellular mechanisms, prodrug strategies and drug delivery systems, is of high interest. Here, we systematically review the anticancer effects of bufadienolides and the molecular or cellular mechanisms of action. Research advancements regarding bufadienolide prodrugs and their tumor-targeting delivery strategies are critically summarized. This work highlights recent scientific advances regarding bufadienolides as effective anticancer agents from 2011 to 2019, which will help researchers to understand the molecular pathways involving bufadienolides, resulting in a selective and safe new lead compound or therapeutic strategy with improved therapeutic applications of bufadienolides for cancer therapy.


Subject(s)
Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Bufanolides/metabolism , Bufanolides/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/therapeutic use , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Apoptosis/physiology , Bufanolides/chemistry , Cell Line, Tumor , Humans , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/therapeutic use
14.
J Leukoc Biol ; 108(2): 493-508, 2020 08.
Article in English | MEDLINE | ID: mdl-32678943

ABSTRACT

A wealth of evidence supports the role of tumor immunotherapy as a vital therapeutic option in cancer. In recent decades, accumulated studies have revealed the anticancer activities of natural products and their derivatives. Increasing interest has been driven toward finding novel potential modulators of tumor immunotherapy from natural products, a hot research topic worldwide. These works of research mainly focused on natural products, including polyphenols (e.g., curcumin, resveratrol), cardiotonic steroids (e.g., bufalin and digoxin), terpenoids (e.g., paclitaxel and artemisinins), and polysaccharide extracts (e.g., lentinan). Compelling data highlight that natural products have a promising future in tumor immunotherapy. Considering the importance and significance of this topic, we initially discussed the integrated research progress of natural products and their derivatives, including target T cells, macrophages, B cells, NKs, regulatory T cells, myeloid-derived suppressor cells, inflammatory cytokines and chemokines, immunogenic cell death, and immune checkpoints. Furthermore, these natural compounds inactivate several key pathways, including NF-κB, PI3K/Akt, MAPK, and JAK/STAT pathways. Here, we performed a deep generalization, analysis, and summarization of the previous achievements, recent progress, and the bottlenecks in the development of natural products as tumor immunotherapy. We expect this review to provide some insight for guiding future research.


Subject(s)
Biological Products/pharmacology , Immunologic Factors/pharmacology , Immunomodulation/drug effects , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Biological Products/chemistry , Biological Products/therapeutic use , Humans , Immunologic Factors/chemistry , Immunologic Factors/therapeutic use , Immunotherapy/adverse effects , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Treatment Outcome
15.
Exp Ther Med ; 18(2): 1357-1365, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31316625

ABSTRACT

The present study assessed human hepatocellular adenoma (HCA) as a potential source of biological material for bioartificial liver (BAL) systems. The histological characteristics of HCA tissues from 8 patients were examined using hematoxylin and eosin staining. The glycogen synthesis capacity of HCA cells was assessed using Periodic Acid-Schiff (PAS) staining and the expression of genes involved in liver function were examined using immunohistochemical staining (IHC) and reverse transcription-quantitative PCR analysis. Primary cells from HCA tissues were subsequently isolated and cultured in vitro. Cells within HCA tissues from 8 patients exhibited a polygonal shape, similar to that of cells in adjacent normal liver tissues. PAS staining of HCA tissues indicated the capacity of these cells to synthesize and store glycogen. Furthermore, IHC and PCR analyses revealed that the expression of liver function genes in HCA tissues were similar to those observed within normal adjacent liver tissues. Primary cells isolated from HCA tissues exhibited an irregular polygonal shape and positive in vitro growth. The current study demonstrated that HCA tissues exhibit histological and functional characteristics matching those of normal human liver tissue and may therefore be a promising alternative to hepatocytes as a source of biological material for BAL systems.

16.
Int J Clin Oncol ; 24(11): 1479-1489, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31278532

ABSTRACT

BACKGROUND: We investigated the microarray data GSE42352 to identify genes that can be used as prognosis factors in osteosarcoma. METHODS: Gene Ontology (GO) biological process analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of Cytoscape ClueGo were used in verifying the function of different genes. Realtime-PCR were used to confirm the microarray results. 83 patient samples were collected and underwent Kaplan-Meier survival analysis and multivariate analysis to predict the prospect of genes using as prognosis factors. RESULTS: After analyzing the microarray data GSE42352, mitosis metaphase to anaphase-related genes CDC20, securin, cyclin A2 and cyclin B2 were found to be overexpressed in osteosarcoma cell lines. Kaplan-Meier survival analysis showed that overexpression of these genes can predict poor prognosis outcomes in osteosarcoma patients. Furthermore, any combination of the four genes seems to be more effective in predicting osteosarcoma outcomes than any of these genes alone. CONCLUSIONS: CDC20 and its downstream substracts securin, cyclin A2 and cyclin B2 are good factors that can predict prognosis outcomes in osteosarcoma. Any two combination of these four genes are more effective to be used as osteosarcoma prognosis factors.


Subject(s)
Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Cdc20 Proteins/genetics , Osteosarcoma/genetics , Adolescent , Adult , Aged , Bone Neoplasms/mortality , Cell Line, Tumor , Child , Cyclin A2/genetics , Cyclin B2/genetics , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Osteosarcoma/mortality , Prognosis , Securin/genetics , Young Adult
17.
Phytomedicine ; 61: 152843, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31039533

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) ranks third among the most common causes of cancer-related deaths worldwide. The chemotherapy for HCC is still insufficient, so far. In searching for effective anti-HCC agents from traditional Chinese medicine, we discovered that aloperine (ALO), a quinolizidine alkaloid from Sophora alopecuroides L., exerts anti-HCC activities. However, the effects of ALO on HCC have been rarely studied, and its underlying mechanisms remain unknown. PURPOSE: This study aims to evaluate the anti-HCC activities of ALO and explore its underlying mechanisms. METHODS: MTT assay and colony formation assay were used to investigate the anti-proliferative effects of ALO on human HCC Hep3B and Huh7 cells. Hoechst 33258 staining was used to observe the morphological changes of cells after ALO treatment. Flow cytometry was used to analyze apoptosis induction, the collapse of the mitochondrial membrane potential and cell cycle distribution. Western blotting was used to examine the expression levels of proteins associated with apoptosis and cell cycle arrest, and key proteins in the PI3K/Akt signaling pathway. Small interfering RNA (siRNA) transfection was used to investigate the role of Akt in ALO-induced apoptosis and cell cycle arrest. Zebrafish tumor model was used to evaluate the anti-HCC effects of ALO in vivo. RESULTS: ALO inhibited the proliferation of Hep3B and Huh7 cells. ALO induced apoptosis in HCC cells, which was accompanied by the loss of mitochondrial potential, the release of cytochrome c into cytosol, as well as the increased cleavages of caspase-9, caspase-3 and PARP. Moreover, ALO induced G2/M cell cycle arrest by downregulating the expression levels of cdc25C, cdc2 and cyclin B1. In addition, ALO inhibited activation of the PI3K/Akt signaling pathway by decreasing the expression levels of p110α, p85, Akt and p-Akt (Ser473). Further study showed that inhibition of Akt by siRNA augmented ALO-mediated apoptosis and G2/M cell cycle arrest in HCC cells. Critically, ALO inhibited the growth of Huh7 cells in vivo. CONCLUSION: We first demonstrated that ALO induced apoptosis and G2/M cell cycle arrest in HCC cells through inhibition of the PI3K/Akt signaling pathway. This study provides a rationale for ALO as a potential chemotherapeutic agent for HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Piperidines/pharmacology , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Embryo, Nonmammalian , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Membrane Potential, Mitochondrial/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quinolizidines , Xenograft Model Antitumor Assays , Zebrafish/embryology
18.
Fitoterapia ; 134: 362-371, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30872126

ABSTRACT

Toad venom (venenum bufonis, also called Chan'su) has been widely used for centuries in China to treat different diseases, especially for cancer. Bufadienolides are mainly responsible for the anti-cancer effects of toad venom. However, systematic chemical composition and cytotoxicity as well as key pharmacophores of these bufadienolides from toad venom have not yet been defined clearly. To enrich the understanding of the diversity of bufadienolides and to find bufadienolides with better activities from toad venom. This study was carried out to isolate chemical constituents, research their anti-tumor effects and mechanisms by MTT assay, flow cytometry and Western blotting, and develop a CoMFA and CoMSIA quantitative structure-activity relationship (QSAR) model for illustrating the vital relationship between the chemical structures and cytotoxicities. Among 47 natural bufadienolides, most of bufadienolides (21 compounds isolated in this study and 26 compounds isolated previously) could significantly inhibit the proliferation of cancer cells, and compounds 1, 8, 12, 18 and 19 showed the most potent inhibitory activity against four types of human tumor cells. Compound 18 induced G2/M cell cycle arrest and apoptosis. Moreover, 3D contour maps generated from CoMFA and CoMSIA identified several pharmacophores of bufadienolides responsible for the anti-tumor activities. Our study might provide reliable information for future structure modification and rational drug design of bufadienolides with anticancer activities in medical chemistry.


Subject(s)
Amphibian Venoms/pharmacology , Antineoplastic Agents/pharmacology , Bufanolides/pharmacology , Animals , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , Humans , Molecular Structure , Quantitative Structure-Activity Relationship
19.
Biomed Pharmacother ; 112: 108621, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30798141

ABSTRACT

Depression has become the leading cause of disability worldwide and a growing public health problem in China. In addition, intestinal flora may be associated with depression. This study investigated the effect of the decoction Xiaoyaosan (XYS) against depressive behavior through the regulation of intestinal flora. Fifty-two healthy male Sprague-Dawley rats were randomly divided into four groups (i.e., control, model, XYS, and fluoxetine). The latter three groups were subjected to 21 days of chronic restraint stress to produce the stress depression model. Rats in the XYS and fluoxetine groups received intragastric administration of XYS and fluoxetine, respectively. The behavioral changes of the rats were observed after 21 days. Stool specimens were sequenced using the 16S rDNA high-throughput method to detect the structure and changes in intestinal flora. There was no difference observed in alpha diversity among the groups. At the phylum level, XYS regulated the abundance of Bacteroidetes, Proteobacteria, Firmicutes, Chloroflexi, and Planctomycetes. At the genus level, XYS reduced the abundance of the Prevotellaceae_Ga6A1_group, Prevotellaceae_UCG-001, and Desulfovibrio. On the contrary, it increased the abundance of the Ruminococcaceae family to improve depression-like behavior. The mechanism involved in this process may be related to short-chain fatty acids, lipopolysaccharides, and intestinal inflammation.


Subject(s)
Depression/drug therapy , Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Microbiome/drug effects , Immobilization , Stress, Psychological/drug therapy , Animals , Depression/microbiology , Depression/psychology , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/physiology , Immobilization/psychology , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Stress, Psychological/microbiology , Stress, Psychological/psychology
20.
Cancer Cell Int ; 18: 209, 2018.
Article in English | MEDLINE | ID: mdl-30574018

ABSTRACT

BACKGROUND: It has been demonstrated that bufadienolides exert potent anti-cancer activity in various tumor types. However, the mechanisms that underlie their anti-cancer properties remain unclear. Yes-associated protein, a key effector of Hippo signaling, functions as a transcription coactivator, plays oncogenic and tumor suppressor roles under different conditions. Here, we report that arenobufagin (ABF), a representative bufadienolide, induced breast cancer MCF-7 cells to undergo apoptosis, which occurred through the JNK-mediated multisite phosphorylation of YAP. METHODS: Cytotoxicity was examined using an MTT assay. ABF-induced apoptosis was measured with a TUNEL assay and Annexin V-FITC/PI double staining assay. Western blotting, immunofluorescence, qRT-PCR and coimmunoprecipitation were employed to assess the expression levels of the indicated molecules. Lose-of-function experiments were carried out with siRNA transfection and pharmacological inhibitors. ABF-induced phosphopeptides were enriched with Ti4+-IMAC chromatography and further subjected to reverse-phase nano-LC-MS/MS analysis. RESULTS: ABF significantly reduced the viability of MCF-7 cells and increased the percentage of early and late apoptotic cells in a concentration- and time-dependent manner. Following ABF treatment, YAP accumulated in the nucleus and bound to p73, which enhanced the transcription of the pro-apoptotic genes Bax and p53AIP1. YAP knock-down significantly attenuated ABF-induced apoptotic cell death. Importantly, we found that the mobility shift of YAP was derived from its phosphorylation at multiple sites, including Tyr357. Moreover, mass spectrometry analysis identified 19 potential phosphorylation sites in YAP, with a distribution of 14 phosphoserine and 5 phosphothreonine residues. Furthermore, we found that the JNK inhibitor SP600125 completely diminished the mobility shift of YAP and its phosphorylation at Tyr357, the binding of YAP and p73, the transcription of Bax and p53AIP1 as well as the apoptosis induced by ABF. These data indicate that ABF induced YAP multisite phosphorylation, which was associated with p73 binding, and that apoptosis was mediated by the JNK signaling pathway. CONCLUSIONS: Our data demonstrate that ABF suppresses MCF-7 breast cancer proliferation by triggering the pro-apoptotic activity of YAP, which is mediated by JNK signaling-induced YAP multisite phosphorylation as well as its association with p73. The present work not only provides additional information on the use of ABF as an anti-breast cancer drug, but also offers evidence that the induction of the tumor suppressor role of YAP may be a therapeutic strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...