Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nano Lett ; 21(6): 2376-2381, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33689386

ABSTRACT

Atomically thin semiconductors provide a highly attractive platform for quantum emitters (QEs): They can be combined with arbitrary substrates, can be spatially aligned with photonic structures, and can be electrically driven. All QEs reported to date in these materials have, however, relied on nominally spin-forbidden transitions, with radiative rates falling substantially below those of other solid-state QE systems. Here we employ strain confinement in monolayer MoSe2 to produce engineered QEs, as confirmed in photon antibunching measurements. We discuss spin-allowed versus spin-forbidden transitions based on magneto- and time-resolved photoluminescence measurements. We calculate a radiative rate for spin-allowed quantum emission greater than 1 ns-1, which exceeds reported radiative rates of WSe2 QEs by 2 orders of magnitude.

2.
Nat Commun ; 9(1): 3718, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30214026

ABSTRACT

Higher-order correlated excitonic states arise from the mutual interactions of excitons, which generally requires a significant exciton density and therefore high excitation levels. Here, we report the emergence of two biexcitons species, one neutral and one charged, in monolayer tungsten diselenide under moderate continuous-wave excitation. The efficient formation of biexcitons is facilitated by the long lifetime of the dark exciton state associated with a spin-forbidden transition, as well as improved sample quality from encapsulation between hexagonal boron nitride layers. From studies of the polarization and magnetic field dependence of the neutral biexciton, we conclude that this species is composed of a bright and a dark excitons residing in opposite valleys in momentum space. Our observations demonstrate that the distinctive features associated with biexciton states can be accessed at low light intensities and excitation densities.

SELECTION OF CITATIONS
SEARCH DETAIL