Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(14): 4158-4164, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557108

ABSTRACT

As a quasi-layered ferrimagnetic material, Mn3Si2Te6 nanoflakes exhibit magnetoresistance behavior that is fundamentally different from their bulk crystal counterparts. They offer three key properties crucial for spintronics. First, at least 106 times faster response compared to that exhibited by bulk crystals has been observed in current-controlled resistance and magnetoresistance. Second, ultralow current density is required for resistance modulation (∼5 A/cm2). Third, electrically gate-tunable magnetoresistance has been realized. Theoretical calculations reveal that the unique magnetoresistance behavior in the Mn3Si2Te6 nanoflakes arises from a magnetic field induced band gap shift across the Fermi level. The rapid current induced resistance variation is attributed to spin-orbit torque, an intrinsically ultrafast process (∼nanoseconds). This study suggests promising avenues for spintronic applications. In addition, it highlights Mn3Si2Te6 nanoflakes as a suitable platform for investigating the intriguing physics underlying chiral orbital moments, magnetic field induced band variation, and spin torque.

2.
Nat Commun ; 15(1): 1259, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341422

ABSTRACT

Achieving room-temperature high anisotropic magnetoresistance ratios is highly desirable for magnetic sensors with scaled supply voltages and high sensitivities. However, the ratios in heterojunction-free thin films are currently limited to only a few percent at room temperature. Here, we observe a high anisotropic magnetoresistance ratio of -39% and a giant planar Hall effect (520 µΩ⋅cm) at room temperature under 9 T in ß-Ag2Te crystals grown by chemical vapor deposition. We propose a theoretical model of anisotropic scattering - induced by a Dirac cone tilt and modulated by intrinsic properties of effective mass and sound velocity - as a possible origin. Moreover, small-size angle sensors with a Wheatstone bridge configuration were fabricated using the synthesized ß-Ag2Te crystals. The sensors exhibited high output response (240 mV/V), high angle sensitivity (4.2 mV/V/°) and small angle error (<1°). Our work translates the developments in topological insulators to a broader impact on practical applications such as high-field magnetic and angle sensors.

3.
Phys Rev Lett ; 127(20): 206801, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860049

ABSTRACT

Topological edge states (TES) exhibit dissipationless transport, yet their dispersion has never been probed. Here we show that the nonlinear electrical response of ballistic TES ascertains the presence of symmetry breaking terms, such as deviations from nonlinearity and tilted spin quantization axes. The nonlinear response stems from discontinuities in the band occupation on either side of a Zeeman gap, and its direction is set by the spin orientation with respect to the Zeeman field. We determine the edge dispersion for several classes of TES and discuss experimental measurement.

4.
Nano Lett ; 21(21): 9005-9011, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34694117

ABSTRACT

Monolayer WTe2 is predicted to be a quantum spin Hall insulator (QSHI), and its quantized edge transport has recently been demonstrated. However, one of the essential properties of a QSHI, spin-momentum locking of the helical edge states, has yet to be experimentally validated. Here, we measure and observe gate-controlled anisotropic magnetoresistance (AMR) in monolayer WTe2 devices. Electrically tuning the Fermi energy into the band gap, a large in-plane AMR is observed and the minimum of the in-plane AMR occurs when the applied magnetic field is perpendicular to the current direction. In line with the experimental observations, the theoretical predictions based on the band structure of monolayer WTe2 demonstrate that the AMR effect originates from spin-momentum locking in the helical edge states of monolayer WTe2. Our findings reveal that the spin quantization axis of the helical edge states in monolayer WTe2 can be precisely determined from AMR measurements.

5.
Phys Rev Lett ; 123(20): 206601, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31809106

ABSTRACT

Recently discovered Dirac semimetals (DSMs) with two Dirac nodes, such as Na_{3}Bi and Cd_{2}As_{3}, are regarded as carrying the Z_{2} topological charge in addition to the chiral charge. We study the Floquet phase transition of Z_{2} topological DSMs subjected to a beam of circularly polarized light. Owing to the resulting interplay of the chiral and Z_{2} charges, the Weyl nodes are not only chirality dependent but also spin dependent, which constrains the behavior in creation and annihilation of the pair of Weyl nodes. Interestingly, we find a novel phase: One spin band is in the Weyl semimetal phase while the other is in the insulator phase, and we dub it the Weyl half-metal (WHM) phase. We further study the spin-dependent transport in a Dirac-Weyl semimetal junction and find a spin filter effect as a fingerprint of the existence of the WHM phase. The proposed spin filter effect, based on the WHM bulk band, is highly tunable in a broad parameter regime and robust against magnetic disorder, which is expected to overcome the shortcomings of the previously proposed spin filter based on the topological edge or surface states. Our results offer a unique opportunity to explore the potential applications of topological DSMs in spintronics.

6.
Phys Rev Lett ; 122(3): 036601, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30735409

ABSTRACT

Weyl semimetals (WSMs) host charged Weyl fermions as emergent quasiparticles. We develop a unified analytical theory for the anomalous positive longitudinal magnetoconductivity (LMC) in a WSM, which bridges the gap between the classical and ultraquantum approaches. More interestingly, the LMC is found to exhibit periodic-in-1/B quantum oscillations, originating from the oscillations of the nonequilibrium chiral chemical potential. The quantum oscillations, superposed on the positive LMC, are a remarkable fingerprint of a WSM phase with a chiral anomaly, whose observation is a valid criteria for identifying a WSM material. In fact, such quantum oscillations were already observed by several experiments.

7.
J Phys Condens Matter ; 31(12): 125502, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30630133

ABSTRACT

We investigate the topological pumping effect in Weyl semimetals, subject to the modulation of two ac electric fields along y  and z directions, respectively. We show that the pumping effect originates from the anomalous velocity related to the Berry curvature. The direction of the pumping current is dependent on the chirality of the Weyl fermions. While the total particle current is vanishing because the Weyl points of opposite chirality always come in pairs in Weyl semimetals, the pump gives rise to a net chirality current or valley current. The noiseless valley current generated can be useful in valleytronic applications.

8.
Sci Rep ; 8(1): 12338, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30120262

ABSTRACT

We study the scattering of the Dirac electrons by a point-like nonmagnetic impurity on the surface of a topological insulator, driven by a time-periodic gate voltage. It is found that, due to the doublet degenerate crossing points of different Floquet sidebands, resonant backscattering can happen for the surface electrons, even without breaking the time-reversal (TR) symmetry of the topological surface states (TSSs). The energy spectrum is reshuffled in a way quite different from that for the circularly polarized light, so that new features are exhibited in the Friedel oscillations of the local charge and spin density of states. Although the electron scattering is dramatically modified by the driving voltage, the 1/ρ scale law of the spin precession persists for the TSSs. The TR invariant backscattering provides a possible way to engineer the Dirac electronic spectrum of the TSSs, without destroying the unique property of spin-momentum interlocking of the TSSs.

9.
Sci Rep ; 7: 43049, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220858

ABSTRACT

We show that quantum spin Hall (QSH) effect does not occur in a square lattice model due to cancellation of the intrinsic spin-orbit coupling coming from different hopping paths. However, we show that QSH effect can be induced by the presence of staggered magnetic fluxes alternating directions square by square. When the resulting Peierls phase takes a special value , the system has a composite symmetry ΘΡ- with Θ the time-reversal operator and Ρ- transforming the Peierls phase from γ to γ - , which protects the gapless edge states. Once the phase deviates from , the edge states open a gap, as the composite symmetry is broken. We further investigate the effect of a Zeeman field on the QSH state, and find that the edge states remain gapless for . This indicates that the QSH effect is immune to the magnetic perturbation.

SELECTION OF CITATIONS
SEARCH DETAIL
...