Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Mol Ther ; 31(4): 1088-1105, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36641623

ABSTRACT

Angelman syndrome (AS) is a neurogenetic disorder caused by the loss of ubiquitin ligase E3A (UBE3A) gene expression in the brain. The UBE3A gene is paternally imprinted in brain neurons. Clinical features of AS are primarily due to the loss of maternally expressed UBE3A in the brain. A healthy copy of paternal UBE3A is present in the brain but is silenced by a long non-coding antisense transcript (UBE3A-ATS). Here, we demonstrate that an artificial transcription factor (ATF-S1K) can silence Ube3a-ATS in an adult mouse model of Angelman syndrome (AS) and restore endogenous physiological expression of paternal Ube3a. A single injection of adeno-associated virus (AAV) expressing ATF-S1K (AAV-S1K) into the tail vein enabled whole-brain transduction and restored UBE3A protein in neurons to ∼25% of wild-type protein. The ATF-S1K treatment was highly specific to the target site with no detectable inflammatory response 5 weeks after AAV-S1K administration. AAV-S1K treatment of AS mice showed behavioral rescue in exploratory locomotion, a task involving gross and fine motor abilities, similar to low ambulation and velocity in AS patients. The specificity and tolerability of a single injection of AAV-S1K therapy for AS demonstrate the use of ATFs as a promising translational approach for AS.


Subject(s)
Angelman Syndrome , Animals , Mice , Angelman Syndrome/genetics , Angelman Syndrome/therapy , Angelman Syndrome/metabolism , Brain/metabolism , Gene Expression Regulation , Transcription Factors/genetics , Phenotype , Ubiquitin-Protein Ligases/genetics
2.
Diagnostics (Basel) ; 12(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35453845

ABSTRACT

Background: Novel, non-invasive diagnostic biomarkers that facilitate early intervention in head and neck cancer are urgently needed. Polyamine metabolites have been observed to be elevated in numerous cancer types and correlated with poor prognosis. The aim of this study was to assess the concentration of polyamines in the saliva and urine from head and neck cancer (HNC) patients, compared to healthy controls. Methods: Targeted metabolomic analysis was performed on saliva and urine from 39 HNC patient samples and compared to 89 healthy controls using a quantitative, targeted liquid chromatography mass spectrometry approach. Results: The metabolites N1-acetylspermine (ASP), N8-acetylspermidine (ASD) and N1,N12-diacetylspermine (DAS) were detected at significantly different concentrations in the urine of HNC patients as compared to healthy controls. Only ASP was detected at elevated levels in HNC saliva as compared to healthy controls. Conclusion: These data suggest that assessment of polyamine-based metabolite biomarkers within the saliva and urine warrants further investigation as a potential diagnostic in HNC patients.

3.
Curr Neuropharmacol ; 19(12): 2125-2140, 2021.
Article in English | MEDLINE | ID: mdl-33998992

ABSTRACT

Advancements in programmable DNA-Binding Proteins (DBDs) that target the genome, such as zinc fingers, transcription activator-like effectors, and Cas9, have broadened drug target design beyond traditional protein substrates. Effective delivery methodologies remain a major barrier in targeting the central nervous system. Currently, adeno-associated virus is the most wellvalidated delivery system for the delivery of DBDs towards the central nervous with multiple, ongoing clinical trials. While effective in transducing neuronal cells, viral delivery systems for DBDs remain problematic due to inherent viral packaging limits or immune responses that hinder translational potential. Direct administration of DBDs or encapsulation in lipid nanoparticles may provide alternative means towards delivering gene therapies into the central nervous system. This review will evaluate the strengths and limitations of current DBD delivery strategies in vivo. Furthermore, this review will discuss the use of adult stem cells as a putative delivery vehicle for DBDs and the potential advantages that these systems have over previous methodologies.


Subject(s)
Gene Editing , Nanoparticles , Central Nervous System , DNA , Liposomes
4.
Hum Mol Genet ; 30(12): 1067-1083, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33856035

ABSTRACT

Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by impaired communication skills, ataxia, motor and balance deficits, intellectual disabilities, and seizures. The genetic cause of AS is the neuronal loss of UBE3A expression in the brain. A novel approach, described here, is a stem cell gene therapy which uses lentivector-transduced hematopoietic stem and progenitor cells to deliver functional UBE3A to affected cells. We have demonstrated both the prevention and reversal of AS phenotypes upon transplantation and engraftment of human CD34+ cells transduced with a Ube3a lentivector in a novel immunodeficient Ube3amat-/pat+ IL2rg-/y mouse model of AS. A significant improvement in motor and cognitive behavioral assays as well as normalized delta power measured by electroencephalogram was observed in neonates and adults transplanted with the gene modified cells. Human hematopoietic profiles observed in the lymphoid organs by detection of human immune cells were normal. Expression of UBE3A was detected in the brains of the adult treatment group following immunohistochemical staining illustrating engraftment of the gene-modified cells expressing UBE3A in the brain. As demonstrated with our data, this stem cell gene therapy approach offers a promising treatment strategy for AS, not requiring a critical treatment window.


Subject(s)
Angelman Syndrome/therapy , Genetic Therapy , Intellectual Disability/therapy , Seizures/therapy , Ubiquitin-Protein Ligases/genetics , Angelman Syndrome/genetics , Angelman Syndrome/pathology , Animals , Antigens, CD34/genetics , Ataxia/genetics , Ataxia/pathology , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/therapy , Disease Models, Animal , Electroencephalography , Gene Expression Regulation/genetics , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Hematopoietic Stem Cell Transplantation , Humans , Intellectual Disability/genetics , Interleukin-2/genetics , Lentivirus/genetics , Mice , Motor Skills Disorders/genetics , Motor Skills Disorders/pathology , Motor Skills Disorders/therapy , Seizures/genetics
5.
Stem Cells Transl Med ; 10(7): 1033-1043, 2021 07.
Article in English | MEDLINE | ID: mdl-33710799

ABSTRACT

Huntington's disease (HD) is a fatal autosomal-dominant neurodegenerative disease caused by a trinucleotide CAG repeat expansion of the huntingtin gene (HTT) that affects 1 in every 10 000 individuals in the United States. Our lab developed a novel immune deficient HD mouse strain, the YACNSG, from a commonly used line, the YAC128 mouse, to enable transplantation studies using engineered human cells in addition to studying the impact of the immune system on disease progression. The primary goal of this project was to characterize this novel immune deQficient HD mouse model, using behavioral assays and histology to compare this new model to the immune competent YAC128 and immune deficient mice that had engraftment of a human immune system. Flow cytometry was used to confirm that the YACNSG strain lacked immune cells, and in vivo imaging was used to assess human mesenchymal stem/stromal cell (MSC) retention compared with a commonly used immune deficient line, the NSG mouse. We found that YACNSG were able to retain human MSCs longer than the immune competent YAC128 mice. We performed behavioral assessments starting at 4 months of age and continued testing monthly until 12 months on the accelerod and in the open field. At 12 months, brains were isolated and evaluated using immunohistochemistry for striatal volume. Results from these studies suggest that the novel immune deficient YACNSG strain of mice could provide a good model for human stem-cell based therapies and that the immune system appears to play an important role in the pathology of HD.


Subject(s)
Disease Models, Animal , Huntington Disease , Mesenchymal Stem Cell Transplantation , Neuroinflammatory Diseases , Animals , Disease Progression , Humans , Huntington Disease/physiopathology , Huntington Disease/therapy , Mice , Mice, Transgenic , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/therapy
6.
Front Mol Neurosci ; 14: 789913, 2021.
Article in English | MEDLINE | ID: mdl-35153670

ABSTRACT

Zinc finger (ZF), transcription activator-like effectors (TALE), and CRISPR/Cas9 therapies to regulate gene expression are becoming viable strategies to treat genetic disorders, although effective in vivo delivery systems for these proteins remain a major translational hurdle. We describe the use of a mesenchymal stem/stromal cell (MSC)-based delivery system for the secretion of a ZF protein (ZF-MSC) in transgenic mouse models and young rhesus monkeys. Secreted ZF protein from mouse ZF-MSC was detectable within the hippocampus 1 week following intracranial or cisterna magna (CM) injection. Secreted ZF activated the imprinted paternal Ube3a in a transgenic reporter mouse and ameliorated motor deficits in a Ube3a deletion Angelman Syndrome (AS) mouse. Intrathecally administered autologous rhesus MSCs were well-tolerated for 3 weeks following administration and secreted ZF protein was detectable within the cerebrospinal fluid (CSF), midbrain, and spinal cord. This approach is less invasive when compared to direct intracranial injection which requires a surgical procedure.

7.
Nucleic Acids Res ; 48(5): 2372-2387, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31925439

ABSTRACT

A significant number of X-linked genes escape from X chromosome inactivation and are associated with a distinct epigenetic signature. One epigenetic modification that strongly correlates with X-escape is reduced DNA methylation in promoter regions. Here, we created an artificial escape by editing DNA methylation on the promoter of CDKL5, a gene causative for an infantile epilepsy, from the silenced X-chromosomal allele in human neuronal-like cells. We identify that a fusion of the catalytic domain of TET1 to dCas9 targeted to the CDKL5 promoter using three guide RNAs causes significant reactivation of the inactive allele in combination with removal of methyl groups from CpG dinucleotides. Strikingly, we demonstrate that co-expression of TET1 and a VP64 transactivator have a synergistic effect on the reactivation of the inactive allele to levels >60% of the active allele. We further used a multi-omics assessment to determine potential off-targets on the transcriptome and methylome. We find that synergistic delivery of dCas9 effectors is highly selective for the target site. Our findings further elucidate a causal role for reduced DNA methylation associated with escape from X chromosome inactivation. Understanding the epigenetics associated with escape from X chromosome inactivation has potential for those suffering from X-linked disorders.


Subject(s)
Chromosomes, Human, X/chemistry , Epigenesis, Genetic , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , X Chromosome Inactivation , Alleles , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Catalytic Domain , Cell Line, Tumor , Chromosomes, Human, X/metabolism , CpG Islands , Gene Editing , Gene Silencing , Humans , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Neurons/cytology , Neurons/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
8.
Biochem Biophys Res Commun ; 512(4): 729-735, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30926165

ABSTRACT

Mesenchymal stem cell (MSC) based therapies are currently being evaluated as a putative therapeutic in numerous human clinical trials. Recent reports have established that exosomes mediate much of the therapeutic properties of MSCs. Exosomes are nanovesicles which mediate intercellular communication, transmitting signals between cells which regulate a diverse range of biological processes. MSC-derived exosomes are packaged with numerous types of proteins and RNAs, however, their metabolomic and lipidomic profiles to date have not been well characterized. We previously reported that MSCs, in response to priming culture conditions that mimic the in vivo microenvironmental niche, substantially modulate cellular signaling and significantly increase the secretion of exosomes. Here we report that MSCs exposed to such priming conditions undergo glycolytic reprogramming, which homogenizes MSCs' metabolomic profile. In addition, we establish that exosomes derive from primed MSCs are packaged with numerous metabolites that have been directly associated with immunomodulation, including M2 macrophage polarization and regulatory T lymphocyte induction.


Subject(s)
Exosomes/immunology , Mesenchymal Stem Cells/immunology , Cell Line , Exosomes/metabolism , Glycolysis , Humans , Immunomodulation , Macrophage Activation , Mesenchymal Stem Cells/metabolism , Metabolome , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
9.
Methods Mol Biol ; 1937: 47-58, 2019.
Article in English | MEDLINE | ID: mdl-30706389

ABSTRACT

Transcription activator-like effectors (TALEs) are modular proteins derived from the plant Xanthomonas sp. pathogen that can be designed to target unique DNA sequences following a simple cipher. Customized TALE proteins can be used in a variety of molecular applications that include gene editing and transcriptional modulation. Presently, we provide a brief primer on the design and construction of TALEs. TALE proteins can be fused to a variety of different effector domains that alter the function of the TALE upon binding. This flexibility of TALE design and downstream effect may offer therapeutic applications that are discussed in this section. Finally, we provide a future perspective on TALE technology and what challenges remain for successful translation of gene-editing strategies to the clinic.


Subject(s)
Transcription Activator-Like Effectors/genetics , Transcription Activator-Like Effectors/metabolism , Xanthomonas/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatin Assembly and Disassembly , DNA/metabolism , Genetic Engineering , Humans , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Transcription Activator-Like Effectors/chemistry , Transcriptional Activation , Xanthomonas/genetics
10.
Neurosci Biobehav Rev ; 98: 194-207, 2019 03.
Article in English | MEDLINE | ID: mdl-30658070

ABSTRACT

To improve the translational predictability of treatment strategies for Huntington's disease (HD), sensitive and analogous cognitive outcomes are needed across HD animal models and humans. Spatial memory measures are promising candidates because they are based on 'visual' or 'non-verbal' cognition, and are commonly tested in both animals and humans. Here, we consider the suitability of spatial memory for strengthening translational links between animals and humans in HD research and clinical trials. We describe findings of spatial memory impairments in human HD and mouse models, including which aspects of spatial memory are most affected and at which time points in disease progression. We also describe the neural systems that underlie spatial memory and link spatial memory impairments to HD neuropathology, focussing on striatal and hippocampal systems. We provide a critical analysis of the literature in terms of the suitability of spatial memory for bridging the translational gap between species. Finally, we discuss possible neural mechanisms that might explain the spatial memory impairments seen in HD, and their relevance to potential treatments.


Subject(s)
Cognition Disorders/pathology , Hippocampus/pathology , Huntington Disease/pathology , Neurogenesis/physiology , Spatial Memory/physiology , Animals , Disease Models, Animal , Humans
11.
Stem Cells Dev ; 28(6): 398-409, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30638129

ABSTRACT

Mesenchymal stem cells (MSCs) facilitate functional recovery in numerous animal models of inflammatory and ischemic tissue-related diseases with a growing body of research suggesting that exosomes mediate many of these therapeutic effects. It remains unclear, however, which types of proteins are packaged into exosomes compared with the cells from which they are derived. In this study, using comprehensive proteomic analysis, we demonstrated that human primed MSCs secrete exosomes (pMEX) that are packaged with markedly higher fractions of specific protein subclasses compared with their cells of origin, indicating regulation of their contents. Notably, we found that pMEX are also packaged with substantially elevated levels of extracellular-associated proteins. Fibronectin was the most abundant protein detected, and data established that fibronectin mediates the mitogenic properties of pMEX. In addition, treatment of SHSY5Y cells with pMEX induced the secretion of growth factors known to possess mitogenic and neurotrophic properties. Taken together, our comprehensive analysis indicates that pMEX are packaged with specific protein subtypes, which may provide a molecular basis for their distinct functional properties.


Subject(s)
Exosomes/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mitosis , Adolescent , Adult , Cell Line, Tumor , Female , Humans , Male , Mesenchymal Stem Cells/cytology , Middle Aged
12.
Neural Regen Res ; 11(5): 702-5, 2016 May.
Article in English | MEDLINE | ID: mdl-27335539

ABSTRACT

Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells (MSC) to secrete brain-derived neurotrophic factor (BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease (HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system.

13.
Expert Opin Biol Ther ; 16(8): 1025-33, 2016 08.
Article in English | MEDLINE | ID: mdl-27159050

ABSTRACT

INTRODUCTION: Brain-derived neurotrophic factor (BDNF) has been implicated in wide range of neurological diseases and injury. This neurotrophic factor is vital for neuronal health, survival, and synaptic connectivity. Many therapies focus on the restoration or enhancement of BDNF following injury or disease progression. AREAS COVERED: The present review will focus on the mechanisms in which BDNF exerts its beneficial functioning, current BDNF therapies, issues and potential solutions for delivery of neurotrophic factors to the central nervous system, and other disease indications that may benefit from overexpression or restoration of BDNF. EXPERT OPINION: Due to the role of BDNF in neuronal development, maturation, and health, BDNF is implicated in numerous neurological diseases making it a prime therapeutic agent. Numerous studies have shown the therapeutic potential of BDNF in a number of neurodegenerative disease models and in acute CNS injury, however clinical translation has fallen short due to issues in delivering this molecule. The use of MSC as a delivery platform for BDNF holds great promise for clinical advancement of neurotrophic factor restoration. The ease with which MSC can be engineered opens the door to the possibility of using this cell-based delivery system to advance a BDNF therapy to the clinic.


Subject(s)
Brain-Derived Neurotrophic Factor/therapeutic use , Nervous System Diseases/drug therapy , Animals , Brain-Derived Neurotrophic Factor/administration & dosage , Humans , Neurodegenerative Diseases/drug therapy , Recombinant Proteins/therapeutic use
14.
Cell Transplant ; 25(4): 677-86, 2016.
Article in English | MEDLINE | ID: mdl-26850319

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases.


Subject(s)
Alleles , Fibroblasts/metabolism , Huntingtin Protein , Huntington Disease , Polymorphism, Single Nucleotide , Transcriptional Activation , Female , Gene Knockdown Techniques , Humans , Huntingtin Protein/biosynthesis , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/metabolism , Male
15.
Mol Ther ; 24(5): 965-77, 2016 05.
Article in English | MEDLINE | ID: mdl-26765769

ABSTRACT

Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies.

16.
Regen Med ; 10(5): 623-46, 2015.
Article in English | MEDLINE | ID: mdl-26237705

ABSTRACT

Stem cell therapies have been explored as a new avenue for the treatment of neurologic disease and damage within the CNS in part due to their native ability to mimic repair mechanisms in the brain. Mesenchymal stem cells have been of particular clinical interest due to their ability to release beneficial neurotrophic factors and their ability to foster a neuroprotective microenviroment. While early stem cell transplantation therapies have been fraught with technical and political concerns as well as limited clinical benefits, mesenchymal stem cell therapies have been shown to be clinically beneficial and derivable from nonembryonic, adult sources. The focus of this review will be on emerging and extant stem cell therapies for juvenile and adult-onset Huntington's disease.


Subject(s)
Huntington Disease/therapy , Stem Cell Transplantation , Adult , Animals , Animals, Genetically Modified , Cell Differentiation , Cell Transplantation/methods , Central Nervous System/pathology , Child , Clinical Trials as Topic , Disease Progression , Embryonic Stem Cells/cytology , Humans , Immune System , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Nerve Growth Factors/chemistry , Neurons/metabolism , Neuroprotection
17.
Methods Mol Biol ; 1218: 321-40, 2015.
Article in English | MEDLINE | ID: mdl-25319661

ABSTRACT

MicroRNAs (miRNAs) are small, single-stranded noncoding RNAs important in many biological processes through posttranscriptional modification of complementary intracellular messenger RNAs (mRNAs). MiRNAs have been reported to induce RNA interference (RNAi), by utilizing the miRNA-induced silencing complex (miRISC) to target mRNAs. They were first discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development, and are now recognized as small gene silencers transcribed from the noncoding regions of a genome. In humans, nearly 97 % of the genome is noncoding DNA and changes in these sequences are frequently noted to manifest in clinical and circumstantial malfunction; for example, type 2 myotonic dystrophy and fragile X syndrome were found to be associated with miRNAs derived from introns. Intronic miRNA (mirtrons) is a class of miRNAs derived from the processing of non-protein-coding regions of gene transcripts. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of RNA polymerase (Pol)-II and spliceosomal components for its biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse, and human cells; however, their functions and applications have not been reported. It is notable that there are different, but still highly conserved, mirtrons in mammalian than in invertebrates, and could be an indication that mirtrons are an evolutionary precursor to existing miRNA biogenesis pathways. Here, we show that intron-derived miRNA is not only able to induce RNAi in mammalian cells but also in fish, chicken embryos, and adult mice cells, demonstrating the evolutionary preservation of this gene regulation system in vivo. These miRNA-mediated animal models provide artificial means to reproduce the mechanisms of miRNA-induced disease in vivo and will shed further light on miRNA-related therapies.


Subject(s)
Gene Silencing , Introns , MicroRNAs/genetics , RNA Polymerase II/genetics , RNA-Induced Silencing Complex/genetics , Animals , Biological Evolution , Chick Embryo , Fishes , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Liposomes/chemistry , Liposomes/metabolism , Mice , MicroRNAs/chemistry , MicroRNAs/metabolism , RNA Polymerase II/metabolism , RNA Splicing , RNA-Induced Silencing Complex/metabolism , Spliceosomes/metabolism , Transfection
18.
Science ; 344(6179): 55-8, 2014 04 04.
Article in English | MEDLINE | ID: mdl-24674868

ABSTRACT

Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATα allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.


Subject(s)
Chromosomes, Fungal , Saccharomyces cerevisiae/genetics , Synthetic Biology/methods , Base Sequence , Chromosomes, Fungal/genetics , Chromosomes, Fungal/metabolism , DNA, Fungal/genetics , Genes, Fungal , Genetic Fitness , Genome, Fungal , Genomic Instability , Introns , Molecular Sequence Data , Mutation , Polymerase Chain Reaction , RNA, Fungal/genetics , RNA, Transfer/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Sequence Analysis, DNA , Sequence Deletion , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...