Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38838205

ABSTRACT

As a pivotal component in human-machine interactions, display devices have undergone rapid development in modern life. Displays such as alternative current electroluminescence|alternative current electroluminescent (ACEL) devices with high flexibility and long operational lifetimes are essential for wearable electronics. However, ACEL devices are constrained by their inherent high driving voltage and complex fabrication processes. Our work presents an easy blade-coating method for fabricating flexible ACEL display devices based on an all-solution process. By dispersing BaTiO3 and ZnS/Cu powder into waterborne polyurethane, we successfully combined dielectric and fluorescence functionalities within a single layer, significantly reducing the device's driving voltage. Additionally, the ionic conducting hydrogel was chosen as a transparent electrode to achieve good electrical contact and strong interfacial adhesion through in situ polymerization. Owing to the unique method, our ACEL device exhibits high flexibility, low driving voltage (20-100 V), high brightness (300+ cd/m2 at 60 V), and environmental friendliness. Furthermore, by repurposing the hydrogel electrode, we integrated strain visualization capabilities within a single device, highlighting its potential for applications such as wearable healthcare monitoring.

2.
Opt Lett ; 49(9): 2317-2320, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691708

ABSTRACT

Alternating current electroluminescence (ACEL) has great potential in flexible displays, especially in textile displays. However, since ACEL needs high-frequency, high-voltage AC signal to drive, there remains no driving scheme for pixelated ACEL display to achieve multiple gray scales. In this work, a driving scheme based on full-bridge inverters is proposed for passive-matrix ACEL (PMACEL) display, which achieves multiple gray scales by changing the duty cycle of the square wave. A single-pixel ACEL displaying 16 gray levels (4 bits) and a 5 × 8 fabric PMACEL displaying eight gray levels are demonstrated, enabling flexible ACEL devices to exhibit more vivid tones on a fabric substrate.

3.
Nanomaterials (Basel) ; 14(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786778

ABSTRACT

Carbon nanotube (CNT) is an excellent field emission material. However, uniformity and stability are the key issues hampering its device application. In this work, a bimetallic W-Co alloy was adopted as the catalyst of CNT in chemical vapor deposition process. The high melting point and stable crystal structure of W-Co helps to increase the grown CNT diameter uniformity and homogeneous crystal structure. High-crystallinity CNTs were grown on the W-Co bimetallic catalyst. Its field emission characteristics demonstrated a low turn-on field, high current density, stable current stability, and uniform emission distribution. The Fowler-Nordheim (FN) and Seppen-Katamuki (SK) analyses revealed that the CNT grown on the W-Co catalyst has a relatively low work function and high field enhancement factor. The high crystallinity and homogeneous crystal structure of CNT also reduce the body resistance and increase the emission current stability and maximum current. The result provides a way to synthesis a high-quality CNT field emitter, which will accelerate the development of cold cathode vacuum electronic device application.

4.
Nanomaterials (Basel) ; 14(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786807

ABSTRACT

Two-dimensional layered materials, characterized by their atomically thin thicknesses and surfaces that are free of dangling bonds, hold great promise for fabricating ultrathin, lightweight, and flexible bipolar junction transistors (BJTs). In this paper, a van der Waals (vdW) BJT was fabricated by vertically stacking MoS2, WSe2, and MoS2 flakes in sequence. The AC characteristics of the vdW BJT were studied for the first time, in which a maximum common emitter voltage gain of around 3.5 was observed. By investigating the time domain characteristics of the device under various operating frequencies, the frequency response of the device was summarized, which experimentally proved that the MoS2/WSe2/MoS2 BJT has voltage amplification capability in the 0-200 Hz region. In addition, the phase response of the device was also investigated. A phase inversion was observed in the low-frequency range. As the operating frequency increases, the relative phase between the input and output signals gradually shifts until it is in phase at frequencies exceeding 2.3 kHz. This work demonstrates the signal amplification applications of the vdW BJTs for neuromorphic computing and wearable healthcare devices.

5.
Nanomaterials (Basel) ; 14(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786846

ABSTRACT

A narrow energy distribution is a prominent characteristic of field-emission cold cathodes. When applied in a vacuum electronic device, the cold cathode is fabricated over a large area and works under a high current and current density. It is interesting to see the energy distribution of the field emitter under such a working situation. In this work, the energy distribution spectra of a single carbon nanotube (CNT) and a CNT film were investigated across a range of currents, spanning from low to high. A consistent result indicated that, at low current emission, the CNT film (area: 0.585 mm2) exhibited a narrow electron energy distribution as small as 0.5 eV, similar to that of a single CNT, while the energy distribution broadened with increased current and voltage, accompanied by a peak position shift. The influencing factors related to the electric field, Joule heating, Coulomb interaction, and emission site over a large area were discussed to elucidate the underlying mechanism. The results provide guidance for the electron source application of nano-materials in cold cathode devices.

6.
Nanomicro Lett ; 16(1): 165, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564038

ABSTRACT

With the increasing demand for terahertz (THz) technology in security inspection, medical imaging, and flexible electronics, there is a significant need for stretchable and transparent THz electromagnetic interference (EMI) shielding materials. Existing EMI shielding materials, like opaque metals and carbon-based films, face challenges in achieving both high transparency and high shielding efficiency (SE). Here, a wrinkled structure strategy was proposed to construct ultra-thin, stretchable, and transparent terahertz shielding MXene films, which possesses both isotropous wrinkles (height about 50 nm) and periodic wrinkles (height about 500 nm). Compared to flat film, the wrinkled MXene film (8 nm) demonstrates a remarkable 36.5% increase in SE within the THz band. The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm, and an average EMI SE/t of 700 dB µm-1 over the 0.1-10 THz. Theoretical calculations suggest that the wrinkled structure enhances the film's conductivity and surface plasmon resonances, resulting in an improved THz wave absorption. Additionally, the wrinkled structure enhances the MXene films' stretchability and stability. After bending and stretching (at 30% strain) cycles, the average THz transmittance of the wrinkled film is only 0.5% and 2.4%, respectively. The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.

7.
Nanomaterials (Basel) ; 14(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38668212

ABSTRACT

Two-dimensional (2D) materials have attracted great attention in the past few years and offer new opportunities for the development of high-performance and multifunctional bipolar junction transistors (BJTs). Here, a van der Waals BJT based on vertically stacked n+-MoS2/WSe2/MoS2 was demonstrated. The electrical performance of the device was investigated under common-base and common-emitter configurations, which show relatively large current gains of α ≈ 0.98 and ß ≈ 225. In addition, the breakdown characteristics of the vertically stacked n+-MoS2/WSe2/MoS2 BJT were investigated. An open-emitter base-collector breakdown voltage (BVCBO) of 52.9 V and an open-base collector-emitter breakdown voltage (BVCEO) of 40.3 V were observed under a room-temperature condition. With the increase in the operating temperature, both BVCBO and BVCEO increased. This study demonstrates a promising way to obtain 2D-material-based BJT with high current gains and provides a deep insight into the breakdown characteristics of the device, which may promote the applications of van der Waals BJTs in the fields of integrated circuits.

8.
Adv Sci (Weinh) ; : e2401631, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654695

ABSTRACT

Flexible and miniaturized photodetectors, offering a fast response across the ultraviolet (UV) to millimeter (MM) wave spectrum, are crucial for applications like healthcare monitoring and wearable optoelectronics. Despite their potential, developing such photodetectors faces challenges due to the lack of suitable materials and operational mechanisms. Here, the study proposes a flexible photodetector composed of a monolayer graphene connected by two distinct metal electrodes. Through the photothermoelectric effect, these asymmetric electrodes induce electron flow within the graphene channel upon electromagnetic wave illumination, resulting in a compact device with ultra-broadband and rapid photoresponse. The devices, with footprints ranging from 3 × 20 µm2 to 50 × 20 µm2, operate across a spectrum from 325 nm (UV) to 1.19 mm (MM) wave. They demonstrate a responsivity (RV) of up to 396.4 ± 5.1 mV W-1, a noise-equivalent power (NEP) of 8.6 ± 0.1 nW Hz- 0.5, and a response time as small as 0.8 ± 0.1 ms. This device facilitates direct imaging of shielded objects and material differentiation under simulated human body-wearing conditions. The straightforward device architecture, aligned with its ultra-broadband operational frequency range, is anticipated to hold significant implications for the development of miniaturized, wearable, and portable photodetectors.

9.
ACS Appl Mater Interfaces ; 16(8): 10877-10885, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38360529

ABSTRACT

Sharp and clean interfaces of van der Waals (vdW) heterostructures are highly demanded in two-dimensional (2D) materials-based devices. However, current assembly methods usually cause interfacial bubbles and wrinkles, hindering carrier interlayer transport. The preparation of a large-scale vdW heterostructure with a bubble-free interface is still a challenge. Although many efforts have been made to eliminate bubbles, the evolution processes of the interfacial bubbles are rarely studied. Here, the interface bubble formation and evolution of the transferred 2D materials and their vdW heterostructure are systemically studied by the atomic force microscopy (AFM) technique and high-resolution surface current mapping. A thermal annealing procedure is developed to reduce the number of bubbles and to improve the quality of interfaces. In addition, influences of the interface residues and nanosteps on bubble evolution are also discussed. Further, we develop the polystyrene (PS)-mediated polydimethylsiloxane (PDMS) transfer technique to realize the high-quality transfer of heterostructure arrays. Finally, high-resolution surface current mapping results confirm that we can now produce highly uniform electrical conduction interfaces of heterojunctions. This study provides guidance for assembling high quality interfaces and paves the way for production of bubble-free heterostructure-based electronic devices with high performance and good uniformity.

10.
ACS Appl Mater Interfaces ; 15(50): 58556-58565, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38054246

ABSTRACT

Highly sensitive photodetectors in the mid-infrared (MIR, 3-15 µm) are highly desired in a growing number of applications. However, only a handful of narrow-band-gap semiconductors are suitable for this purpose, most of which require cryogenic cooling to increase the signal-to-noise ratio. The realization of high-performance MIR photodetectors operating at room temperature remains a challenge. Herein, we report on plasma-treated few-layer MoS2 for room-temperature MIR (10 µm) photodetection. Oxygen plasma treatment, which is a mature microfabrication process, is employed. The ion kinetic energy of oxygen plasma is adjusted to 70-130 eV. A photoresponsivity of 0.042 mA/W and a detectivity of 1.57 × 107 Jones are obtained under MIR light (10 µm) illumination with an average power density of 114.6 mW/cm2. The photoresponse is attributed to the introduction of electronic states in the band gap of MoS2 through oxygen substitution. A graphene/plasma-treated MoS2/graphene device is further demonstrated to shorten the active channel while maintaining the illumination area. The photoresponsivity and detectivity are largely boosted to 1.8 A/W and 2.64 × 109 Jones, respectively. The excellent detective performance of the graphene/plasma-treated MoS2/graphene device is further demonstrated in single-detector MIR (10 µm) scanning imaging. This work offers a facile approach to constructing integrated MoS2-based MIR photodetectors.

11.
Light Sci Appl ; 12(1): 253, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37852955

ABSTRACT

Hyperbolic polaritons can be launched and guided into mirror-symmetric-broken trajectories using an in-plane dipolar nano-antenna, and this asymmetry can be configured by adjusting the polarization direction of the in-plane dipole moment.

12.
Small ; 19(50): e2304233, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37616506

ABSTRACT

Monolayer tungsten disulfide (ML WS2 ) is believed as an ideal photosensitive material due to its small direct bandgap, large exciton/trion binding energy, high carrier mobility, and considerable quantum conversion efficiency. Compared with other photosensitive devices, planar field emission (FE)-type photodetectors with a full-plane structure should simultaneously have rapider switching speed and lower power consumption. In this work, ML WS2 microtips are fabricated by electron beam lithography (EBL) way and used to construct a planar FE-type photodetector. By optimization design, ML WS2 with three microtips can exhibit the maximum current density as high as  52 A cm-2 (@300 V µm-1 ), and the largest photoresponsivity is up to 6.8 × 105 A W-1 under green light irradiation, superior to that of many other ML transition metal dichalcogenide (TMDC) detectors. More interestingly, ML WS2 devices with microtips can effectively solve the contradictory problem between large photoresponsivity and rapid switching speed. The excellent photoresponse performances of ML WS2 with microtips should be attributed to their high carrier mobility, sharp emission edge, ultrahigh quantum yield, and unique planar FE device structure. Our research may shed new light on exploring the fabrication technology and photosensitive mechanism of two dimensional (2D) material-based planar FE photodetectors.

13.
Nanoscale ; 15(32): 13224-13232, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37492006

ABSTRACT

Optical skyrmions have recently attracted growing interest due to their potential applications in deep-subwavelength imaging and nanometrology. While optical skyrmions have been successfully demonstrated using different field vectors, the study of their generation and control, as well as their general correlation with electromagnetic (EM) fields, is still in its infancy. Here, we theoretically propose that evanescent transverse-magnetic-polarized (TM-polarized) EM fields with rotational symmetry are actually Néel-type optical target skyrmions of the electric field vectors. Such optical target skyrmions are independent of the operation frequency and medium. Our proposal was verified by numerical simulations and real-space nano-imaging experiments performed on a graphene monolayer, where the target skyrmions could be as small as ∼100 nm in diameter. The results can therefore not only further our understanding of the formation mechanisms of EM topological textures, but also provide guidelines for the facile construction of EM skyrmions that may impact future information technologies.

14.
Nanoscale ; 15(19): 8643-8653, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37128823

ABSTRACT

The development of a point electron source requires an efficient excitation mode with low energy consumption, flexible tunability, and high performance. In particular for traditional electron emission cathode materials, it is necessary to expand the function of this aspect to meet application demands in many emerging fields. In this study, we propose a photo-electric co-excited scheme to drive a tungsten (W) needle nano-cold-cathode. The developed W needle cathode has been demonstrated to show electron emission performance with a narrow energy spread of 0.76 eV and a high brightness of 4 × 109 A m-2 sr-1 V-1. This could be achieved through low-intensity co-excitation, including an electrostatic field below ∼0.5 V µm-1 and a laser intensity at ∼10 W cm-2 level. Based on this co-excitation, the electron emission further exhibited a tunable property relative to the intrinsic properties of the incident light, such as optical frequency and polarization, which is shown to be directly modulated by the structure of the W needle nano-cold-cathode. This work provides a choice to achieve tunable, miniaturized and integrated vacuum micro- and nano-electronic devices.

15.
Nat Commun ; 14(1): 2716, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37169788

ABSTRACT

One of the main bottlenecks in the development of terahertz (THz) and long-wave infrared (LWIR) technologies is the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon - polariton momentum makes far-field excitation of HPhPs challenging. Here, we propose an In-Plane Hyperbolic Polariton Tuner that is based on patterning van der Waals semiconductors, here α-MoO3, into ribbon arrays. We demonstrate that such tuners respond directly to far-field excitation and give rise to LWIR and THz resonances with high quality factors up to 300, which are strongly dependent on in-plane hyperbolic polariton of the patterned α-MoO3. We further show that with this tuner, intensity regulation of reflected and transmitted electromagnetic waves, as well as their wavelength and polarization selection can be achieved. Our results can help the development of THz and LWIR miniaturized devices.

16.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985961

ABSTRACT

With the progress of wide bandgap semiconductors, compact solid-state light-emitting devices for the ultraviolet wavelength region are of considerable technological interest as alternatives to conventional ultraviolet lamps in recent years. Here, the potential of aluminum nitride (AlN) as an ultraviolet luminescent material was studied. An ultraviolet light-emitting device, equipped with a carbon nanotube (CNT) array as the field-emission excitation source and AlN thin film as cathodoluminescent material, was fabricated. In operation, square high-voltage pulses with a 100 Hz repetition frequency and a 10% duty ratio were applied to the anode. The output spectra reveal a dominant ultraviolet emission at 330 nm with a short-wavelength shoulder at 285 nm, which increases with the anode driving voltage. This work has explored the potential of AlN thin film as a cathodoluminescent material and provides a platform for investigating other ultrawide bandgap (UWBG) semiconductors. Furthermore, while using AlN thin film and a carbon nanotube array as electrodes, this ultraviolet cathodoluminescent device can be more compact and versatile than conventional lamps. It is anticipated to be useful in a variety of applications such as photochemistry, biotechnology and optoelectronics devices.

17.
Nanomaterials (Basel) ; 12(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36500828

ABSTRACT

Field electron emission vacuum photodiode is promising for converting free-space electromagnetic radiation into electronic signal within an ultrafast timescale due to the ballistic electron transport in its vacuum channel. However, the low photoelectric conversion efficiency still hinders the popularity of vacuum photodiode. Here, we report an on-chip integrated vacuum nano-photodiode constructed from a Si-tip anode and a single-crystal CsPbBr3 cathode with a nano-separation of ~30 nm. Benefiting from the nanoscale vacuum channel and the high surface work function of the CsPbBr3 (4.55 eV), the vacuum nano-photodiode exhibits a low driving voltage of 15 V with an ultra-low dark current (50 pA). The vacuum nano-photodiode demonstrates a high photo responsivity (1.75 AW-1@15 V) under the illumination of a 532-nm laser light. The estimated external quantum efficiency is up to 400%. The electrostatic field simulation indicates that the CsPbBr3 cathode can be totally depleted at an optimal thickness. The large built-in electric field in the depletion region facilitates the dissociation of photoexcited electron-hole pairs, leading to an enhanced photoelectric conversion efficiency. Moreover, the voltage drop in the vacuum channel increases due to the photoconductive effect, which is beneficial to the narrowing of the vacuum barrier for more efficient electron tunneling. This device shows great promise for the development of highly sensitive perovskite-based vacuum opto-electronics.

18.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364521

ABSTRACT

Controllable synthesis of high crystallinity, low defects vertical few-layer graphene (VFLG) is significant for its application in electron emission, sensor or energy storage, etc. In this paper, a template method was introduced to grow high crystallinity VFLG (HCVFLG). A copper mask acted as a template which has two effects in the high-density plasma enhanced deposition which are protecting VFLG from ion etching and creating a molecular gas flow to assist efficient growth. Raman and TEM results confirmed the improved crystallinity of VFLG with the assistance of a copper mask. As a field emitter, the HCVFLG has a large field emission current and a low turn-on field. The maximum field emission current of a single HCVFLG sheet reaches 93 µA which is two orders of magnitude higher than VFLG grown without a mask. The maximum current density of HCVFLG film reached 67.15 mA/cm2 and is 2.6 times of VFLG grown without a mask. The vacuum breakdown mechanism of HCVFLG was contacted interface damage resulting in VFLG detaching from the substrate. This work provides a practical strategy for high-quality VFLG controllable synthesis and provides a simple method to realize the pattern growth of VFLG.

19.
iScience ; 25(10): 105164, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36204276

ABSTRACT

As the limited carrier densities in atomic thin materials can be well controlled by electrostatic gates, p-n junctions based on two-dimensional materials in the coplanar split-gate configuration can work as photodetectors or light-emitting diodes. These coplanar gates can be fabricated in a simple one-step lithography process and are frequently used in hybrid integration with on-chip optical structures. However, the polarization-dependent responsivity of such a configuration is less explored in the near-infrared band, and a clear understanding is still missing. Here we fabricate near-infrared tunable multiple modes twisted bilayer graphene photodetector enabled by the coplanar split-gate control and confirm that the photothermoelectric effect governs the photovoltage mechanism of the p-n junction mode. Our study also elucidates that the discrepancy of the responsivities under different linear polarizations is owing to the different cavity modes and provides a valuable example for designing chip-integrated optoelectronic devices.

20.
ACS Nano ; 16(9): 15016-15025, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35998614

ABSTRACT

The capillary-force-assisted transfer has shown application potential for constructing two-dimensional (2D) electronic and optoelectronic devices for the advantage of free of spin coating the organic compound and etching the substrate. Currently, the transfer mechanism remains obscure. The capillary adhesion mechanism and capillary invasion separation mechanism were proposed independently and rarely discussed in a comprehensive manner. What is more, the integrity and utilization remain to be improved. Here, we developed the capillary-force-assisted transfer method with high utilization and integrity. Uniformity of water transport was improved by introducing water from the sidewall of the small polydimethylsiloxane (PDMS) stamp driven by capillary force. The transfer integrity rate increased, and the location of the complete samples became predictable. The transfer utilization increased as the limited water transportation minimized the impact on the surrounding WS2. The monolayer triangle WS2 crystals from adjacent areas on the sapphire substrate were transferred one after another. Besides, local mechanical exfoliation of the continuous WS2 thin films was demonstrated, implying that the capillary adhesion is strong enough to break the strong in-plane covalent bond and overcome the van der Waals force between WS2 and sapphire substrate. Finally, the water transport model between two surfaces with different hydrophobicity combinations was derived on the basis of the Young-Laplace equation. The analysis of water transport between different interfaces reveals how capillary adhesion and capillary invasion work together to achieve capillary force transfer. This study highlights the potential of the capillary-force-assisted transfer as an efficient technique for fabricating van der Waals structures based on two-dimensional atomic crystals, especially periodic structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...