Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 44(11): 2322-2330, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37328649

ABSTRACT

Clinical application of PD-1 and PD-L1 monoclonal antibodies (mAbs) is hindered by their relatively low response rates and the occurrence of drug resistance. Co-expression of B7-H3 with PD-L1 has been found in various solid tumors, and combination therapies that target both PD-1/PD-L1 and B7-H3 pathways may provide  additional therapeutic benefits. Up to today, however, no bispecific antibodies targeting both PD-1 and B7-H3 have reached the clinical development stage. In this study, we generated a stable B7-H3×PD-L1 bispecific antibody (BsAb) in IgG1-VHH format by coupling a humanized IgG1 mAb against PD-L1 with a humanized camelus variable domain of the heavy-chain of heavy-chain antibody (VHH) against human B7-H3. The BsAb exhibited favorable thermostability, efficient T cell activation, IFN-γ production, and antibody-dependent cell-mediated cytotoxicity (ADCC). In a PBMC humanized A375 xenogeneic tumor model, treatment with BsAb (10 mg/kg, i.p., twice a week for 6 weeks) showed enhanced antitumor activities compared to monotherapies and, to some degree, combination therapies. Our results suggest that targeting both PD-1 and B7-H3 with BsAbs increases their specificities to B7-H3 and PD-L1 double-positive tumors and induces a synergetic effect. We conclude that B7-H3×PD-L1 BsAb is favored over mAbs and possibly combination therapies in treating B7-H3 and PD-L1 double-positive tumors.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Leukocytes, Mononuclear/metabolism , Antibodies, Monoclonal , Immunoglobulin G/metabolism
2.
FEBS Open Bio ; 12(9): 1644-1656, 2022 09.
Article in English | MEDLINE | ID: mdl-35792784

ABSTRACT

Dinutuximab (ch14.18) was the first approved monoclonal antibody against the tumor-associated antigen disialoganglioside GD2. Despite its success in treating neuroblastoma (NB), it triggers a significant amount of neuropathic pain in patients, possibly through complement-dependent cytotoxicity (CDC). We hypothesized that modifying ch14.18 using antibody engineering techniques, such as humanization, affinity maturation, and Fc engineering, may enable the development of next-generation GD2-specific antibodies with reduced neuropathic pain and enhanced antitumor activity. In this study we developed the H3-16 IgG1m4 antibody from ch14.18 IgG1. H3-16 IgG1m4 exhibited enhanced binding activity to GD2 molecules and GD2-positive cell lines as revealed by ELISA, and its cross-binding activity to other gangliosides was not altered. The CDC activity of H3-16 IgG1m4 was decreased, and the antibody-dependent cellular cytotoxicity (ADCC) activity was enhanced. The pain response after H3-16 IgG1m4 antibody administration was also reduced, as demonstrated using the von Frey test in Sprague-Dawley (SD) rats. In summary, H3-16 IgG1m4 may have potential as a monoclonal antibody with reduced side effects.


Subject(s)
Antibodies, Monoclonal , Neuralgia , Animals , Antibodies, Monoclonal/pharmacology , Gangliosides , Neuralgia/drug therapy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...