Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 9(1): 170, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921316

ABSTRACT

BACKGROUND: It has been demonstrated previously that induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (MSCs) have immunosuppressive effects on activated T cells. However, the effects of iPSC-MSCs on quiescent T cells are still unknown. The aim of this study was to identify the immunomodulatory role of iPSC-MSCs on resting peripheral blood mononuclear cells (PBMCs) from allergic rhinitis (AR) patients. METHODS: PBMCs were cocultured with iPSC-MSCs without any stimulation, following which lymphocyte proliferation, activation of T cells, TH1/TH2 and regulatory T (Treg) cell differentiation, and Treg cell function were analyzed. The roles of soluble factors and cell-cell contact were examined to investigate the mechanisms involved. RESULTS: iPSC-MSCs promoted the proliferation of resting lymphocytes, activated CD4+ and CD8+ T cells, and upregulated and activated Treg cells without any additional stimulation. In addition, iPSC-MSCs balanced biased TH1/TH2 cytokine levels. Cell-cell contact was confirmed to be a possible mechanism involved. NF-κB was identified to play an important role in the immunomodulatory effects of iPSC-MSCs on quiescent T cells. CONCLUSIONS: iPSC-MSCs activate quiescent T cells and elevate regulatory T-cell response in AR patients, suggesting different immunomodulatory functions of iPSC-MSCs according to the phases of diseases. Therefore, iPSC-MSCs are a potential therapeutic candidate for treating allergic airway inflammation.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , NF-kappa B/metabolism , Rhinitis, Allergic/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Humans , Immunomodulation , Rhinitis, Allergic/pathology
2.
Stem Cell Res Ther ; 8(1): 48, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28253916

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have potent immunomodulatory effects on multiple immune cells and have great potential in treating immune disorders. Induced pluripotent stem cells (iPSCs) serve as an unlimited and noninvasive source of MSCs, and iPSC-MSCs have been reported to have more advantages and exhibit immunomodulation on T lymphocytes and natural killer cells. However, the effects of iPSC-MSCs on dendritic cells (DCs) are unclear. The aim of this study is to investigate the effects of iPSC-MSCs on the differentiation, maturation, and function of DCs. METHODS: Human monocyte-derived DCs were induced and cultured in the presence or absence of iPSC-MSCs. Flow cytometry was used to analyze the phenotype and functions of DCs, and enzyme-linked immunosorbent assay (ELISA) was used to study cytokine production. RESULTS: In this study, we successfully induced MSCs from different clones of human iPSCs. iPSC-MSCs exhibited a higher proliferation rate with less cell senescence than BM-MSCs. iPSC-MSCs inhibited the differentiation of human monocyte-derived DCs by both producing interleukin (IL)-10 and direct cell contact. Furthermore, iPSC-MSCs did not affect immature DCs to become mature DCs, but modulated their functional properties by increasing their phagocytic ability and inhibiting their ability to stimulate proliferation of lymphocytes. More importantly, iPSC-MSCs induced the generation of IL-10-producing regulatory DCs in the process of maturation, which was mostly mediated by a cell-cell contact mechanism. CONCLUSIONS: Our results indicate an important role for iPSC-MSCs in the modulation of DC differentiation and function, supporting the clinical application of iPSC-MSCs in DC-mediated immune diseases.


Subject(s)
Cell Communication/immunology , Dendritic Cells/cytology , Immunomodulation , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Cell Differentiation , Cell Proliferation , Clone Cells , Coculture Techniques , Dendritic Cells/immunology , Humans , Immunophenotyping , Induced Pluripotent Stem Cells/immunology , Interleukin-10/biosynthesis , Interleukin-10/immunology , Mesenchymal Stem Cells/immunology , Monocytes/cytology , Monocytes/immunology , Primary Cell Culture , Signal Transduction
3.
PLoS One ; 10(12): e0144106, 2015.
Article in English | MEDLINE | ID: mdl-26630490

ABSTRACT

BACKGROUND: Connexin (Cx)-based gap junction channels play important roles in the inflammatory response. Cx43 is involved in the pathogenesis of some lung diseases such as acute lung injury. However, the Cx43 expression in asthma is unclear. In the present study, we used a murine model of ovalbumin (OVA)-induced allergic airway disease to examine the levels of Cx43 and analyze the relationship between Cx43 and airway inflammation in allergic airway disease. METHODS: Asthma was induced in mice via sensitization and challenge with OVA. Cx43 mRNA and protein expression levels were investigated via QT-PCR, western blot, and immunohistochemistry 0 h, 8 h, 1 d, 2 d and 4 d after the first challenge. The relationship between Cx43 protein levels and inflammatory cell infiltration, cytokine levels was analyzed. RESULTS: The OVA-induced mice exhibited typical pathological features of asthma, including airway hyper-responsiveness; strong inflammatory cell infiltration surrounding the bronchia and vessels; many inflammatory cells in the bronchoalveolar lavage fluid (BALF); higher IL-4, IL-5 and IL-13 levels; and high OVA specific IgE levels. Low Cx43 expression was detected in the lungs of control (PBS) mice. A dramatic increase in the Cx43 mRNA and protein levels was found in the asthmatic mice. Cx43 mRNA and protein expression levels increased in a time-dependent manner in asthma mice, and Cx43 was mostly localized in the alveolar and bronchial epithelial layers. Moreover, lung Cx43 protein levels showed a significant positive correlation with inflammatory cell infiltration in the airway and IL-4 and IL-5 levels in the BALF at different time points after challenge. Interestingly, the increase in Cx43 mRNA and protein levels occurred prior to the appearance of the inflammatory cell infiltration. CONCLUSION: Our data suggest that there is a strong upregulation of Cx43 mRNA and protein levels in the lungs in asthma. Cx43 levels also exhibited a positive correlation with allergic airway inflammation. Cx43 may represent a target to treat allergic airway diseases in the future.


Subject(s)
Asthma/chemically induced , Asthma/genetics , Connexin 43/genetics , Lung/pathology , Ovalbumin/pharmacology , Up-Regulation/genetics , Animals , Asthma/pathology , Bronchoalveolar Lavage Fluid/chemistry , Female , Inflammation/genetics , Inflammation/pathology , Interleukin-13/genetics , Interleukin-4/genetics , Interleukin-5/genetics , Lung/drug effects , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , Respiratory Hypersensitivity/genetics , Respiratory Hypersensitivity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...