Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Light Sci Appl ; 13(1): 98, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678015

ABSTRACT

Due to its unbounded and orthogonal modes, the orbital angular momentum (OAM) is regarded as a key optical degree of freedom (DoF) for future information processing with ultra-high capacity and speed. Although the manipulation of OAM based on metasurfaces has brought about great achievements in various fields, such manipulation currently remains at single-DoF level, which means the multiplexed manipulation of OAM with other optical DoFs is still lacking, greatly hampering the application of OAM beams and advancement of metasurfaces. In order to overcome this challenge, we propose the idea of multiplexed coherent pixel (MCP) for metasurfaces. This approach enables the manipulation of arbitrary complex-amplitude under incident lights of both plane and OAM waves, on the basis of which we have realized the multiplexed DoF control of OAM and wavelength. As a result, the MCP method expands the types of incident lights which can be simultaneously responded by metasurfaces, enriches the information processing capability of metasurfaces, and creates applications of information encryption and OAM demultiplexer. Our findings not only provide means for the design of high-security and high-capacity metasurfaces, but also raise the control and application level of OAM, offering great potential for multifunctional nanophotonic devices in the future.

3.
J Biol Chem ; 299(7): 104854, 2023 07.
Article in English | MEDLINE | ID: mdl-37224962

ABSTRACT

Functional depletion of the U1 small nuclear ribonucleoprotein (snRNP) with a 25 nt U1 AMO (antisense morpholino oligonucleotide) may lead to intronic premature cleavage and polyadenylation of thousands of genes, a phenomenon known as U1 snRNP telescripting; however, the underlying mechanism remains elusive. In this study, we demonstrated that U1 AMO could disrupt U1 snRNP structure both in vitro and in vivo, thereby affecting the U1 snRNP-RNAP polymerase II interaction. By performing chromatin immunoprecipitation sequencing for phosphorylation of Ser2 and Ser5 of the C-terminal domain of RPB1, the largest subunit of RNAP polymerase II, we showed that transcription elongation was disturbed upon U1 AMO treatment, with a particular high phosphorylation of Ser2 signal at intronic cryptic polyadenylation sites (PASs). In addition, we showed that core 3'processing factors CPSF/CstF are involved in the processing of intronic cryptic PAS. Their recruitment accumulated toward cryptic PASs upon U1 AMO treatment, as indicated by chromatin immunoprecipitation sequencing and individual-nucleotide resolution CrossLinking and ImmunoPrecipitation sequencing analysis. Conclusively, our data suggest that disruption of U1 snRNP structure mediated by U1 AMO provides a key for understanding the U1 telescripting mechanism.


Subject(s)
Morpholinos , Oligonucleotides, Antisense , RNA Precursors , Ribonucleoprotein, U1 Small Nuclear , Morpholinos/metabolism , Oligonucleotides, Antisense/metabolism , Oligonucleotides, Antisense/pharmacology , Polyadenylation , Ribonucleoprotein, U1 Small Nuclear/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Precursors/metabolism , Humans , HeLa Cells , Gene Knockdown Techniques , Cleavage And Polyadenylation Specificity Factor , Cleavage Stimulation Factor/metabolism , Transcription, Genetic/drug effects
4.
Diabetes Metab Syndr Obes ; 16: 1063-1074, 2023.
Article in English | MEDLINE | ID: mdl-37090841

ABSTRACT

Purpose: To explore the underlying mechanism of the anti-diabetic effect of resveratrol (RSV) on regulating glycolipid metabolism in diabetic rats induced by streptozotocin (STZ) and a high-fat diet (HFD). Methods: Male Wistar rats were randomized into three groups. Two groups were fed a high-fat diet and intraperitoneally injected with STZ (35 mg/kg), with one group also treated with RSV (30 mg/kg/d), and the third, control group was fed a normal diet. After 12 weeks, blood lipid levels and fasting blood glucose (FBG) were assessed. Histopathological changes were evaluated by hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining. The protein expression of hypoxia-inducible factor 1α (HIF-1α) was assessed by Western blotting and immunofluorescence, and the proteins level of 3-phosphoinositide-dependent protein kinase 1 (PDK1), phosphorylated-PDK1 (p-PDK1), phosphorylated-protein kinase B (p-AKT), glucose transporter 1 (GLUT1) and low-density lipoprotein receptor (LDLR) in the liver were analyzed by Western blotting. The mRNA levels of Hif-1α, Glut1 and Ldlr in the liver were determined by RT-qPCR. Results: RSV treatment significantly reduced liver/body weight ratio (L/W, P < 0.05), FBG (P < 0.01) and serum concentrations of total cholesterol (TC, P < 0.05), triglycerides (TG, P < 0.01) and low-density lipoprotein-cholesterol (LDL-C, P < 0.05) in diabetic rats. RSV also improved diabetic symptoms, attenuated liver steatosis and increased liver glycogen accumulation. RSV treatment significantly downregulated the proteins expression of p-PDK1 and p-AKT (P < 0.01) and the levels of HIF-1α (P < 0.05) and GLUT1 (P < 0.01), while significantly upregulating the level of LDLR (P < 0.05). Conclusion: RSV was effective in improving glycolipid metabolism in diabetic rats, probably by inhibiting the PDK1/AKT/HIF-1α pathway and regulation of its downstream target levels. These findings may provide new insight into the mechanism of action of RSV in the treatment of diabetes.

5.
Chin J Integr Med ; 29(6): 500-507, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35258781

ABSTRACT

OBJECTIVE: To elucidate the renoprotective effect of resveratrol (RSV) on sphingosine kinase 1 (SphK1) signaling pathway and expression of its downstream molecules including activator protein 1 (AP-1) and transformation growth factor-ß1 (TGF-ß1) in lipopolysaccharide (LPS)-induced glomerular mesangial cells (GMCs). METHODS: The rat GMCs line (HBZY-1) were cultured and randomly divided into 5 groups, including control, LPS (100 ng/mL), and 5, 10, 20 µmol/L RSV-treated groups. In addition, SphK1 inhibitor (SK-II) was used as positive control. GMCs were pretreated with RSV for 2 h and treated with LPS for another 24 h. GMCs proliferation was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The proteins expression of SphK1, p-c-Jun and TGF-ß1 in GMCs were detected by Western blot, and DNA-binding activity of AP-1 was performed by electrophoretic mobility shift assay (EMSA). The binding activity between RSV and SphK1 protein was detected by AutoDock Vina and visualized by Discovery Studio 2016. RESULTS: LPS could obviously stimulate GMCs proliferation, elevate SphK1, p-c-Jun and TGF-ß1 expression levels and increase the DNA-binding activity of AP-1 (P<0.05 or P<0.01), whereas these effects were significantly blocked by RSV pretreatment. It was also suggested that the effect of RSV was similar to SK-II (P>0.05). Moreover, RSV exhibited good binding affinity towards SphK1, with docking scores of -8.1 kcal/moL and formed hydrogen bonds with ASP-178 and LEU-268 in SphK1. CONCLUSION: RSV inhibited LPS-induced GMCs proliferation and TGF-ß1 expression, which may be independent of its hypoglycemic effect on preventing the development of mesangial cell fibrosis and closely related to the direct inhibition of SphK1 pathway.


Subject(s)
Lipopolysaccharides , Mesangial Cells , Animals , Rats , Lipopolysaccharides/pharmacology , Resveratrol/pharmacology , Transcription Factor AP-1 , Transforming Growth Factor beta1 , Intercellular Signaling Peptides and Proteins , Cell Proliferation , DNA , Cells, Cultured
6.
Sci Rep ; 12(1): 19626, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379988

ABSTRACT

As a systematic investigation of the correlations between physical examination indicators (PEIs) is lacking, most PEIs are currently independently used for disease warning. This results in the general physical examination having limited diagnostic values. Here, we systematically analyzed the correlations in 221 PEIs between healthy and 34 unhealthy statuses in 803,614 individuals in China. Specifically, the study population included 711,928 healthy participants, 51,341 patients with hypertension, 12,878 patients with diabetes, and 34,997 patients with other unhealthy statuses. We found rich relevance between PEIs in the healthy physical status (7662 significant correlations, 31.5%). However, in the disease conditions, the PEI correlations changed. We focused on the difference in PEIs between healthy and 35 unhealthy physical statuses and found 1239 significant PEI differences, suggesting that they could be candidate disease markers. Finally, we established machine learning algorithms to predict health status using 15-16% of the PEIs through feature extraction, reaching a 66-99% accurate prediction, depending on the physical status. This new reference of the PEI correlation provides rich information for chronic disease diagnosis. The developed machine learning algorithms can fundamentally affect the practice of general physical examinations.


Subject(s)
Health Status , Machine Learning , Humans , Physical Examination , China
7.
Ann Transl Med ; 10(8): 471, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35571399

ABSTRACT

Background: Colposcopy is a critical component of cervical cancer screening services, but the accuracy of colposcopy varies greatly due to the lack of standardized training for colposcopists and pathologists. Thus, to improve the accuracy of colposcopy in the detection of cervical lesions intelligently is urgent. Here, we explored the sensitivity and specificity of a bioimpedance-based neural network algorithm in distinguishing normal and precancerous cervical tissues. Methods: Bioimpedance data were collected using a bioimpedance analyzer (Mscan1.0B, Sealand Technology, Chengdu, China) from the cervices of 102 female patients with abnormal cervical cytology (≥atypical squamous cells of undetermined significance) who required further colposcopy. Finally, the data of 106 samples from 37 patients were included, among which 85were used as the training set and 21 as the validation set. Using the biopsy pathology at each locus as the gold standard, the sensitivity, specificity, predictive value, likelihood ratio, and false positive and false negative rates of the bioimpedance-based neural network in identifying the normal and precancerous cervical tissues were calculated. Results: The bioimpedance method had a sensitivity of 0.90 [95% confidence interval (CI): 0.54 to 0.99], specificity of 0.82 (95% CI: 0.48 to 0.97), positive predictive value of 0.82 (95% CI: 0.48 to 0.97), and a negative predictive value of 0.90 (95% CI: 0.54 to 0.99) in distinguishing normal and precancerous cervical tissues. The Kappa value was 0.72. Conclusions: The bioimpedance method was an intelligent method with relative good sensitivity and specificity in distinguishing benign cervical tissue and precancerous lesions and can therefore be used as an adjunctive test to colposcopy to improve the detection of cervical lesions.

8.
RNA Biol ; 19(1): 686-702, 2022.
Article in English | MEDLINE | ID: mdl-35491945

ABSTRACT

It has recently been shown that CFIm25, a canonical mRNA 3' processing factor, could play a variety of physiological roles through its molecular function in the regulation of mRNA alternative polyadenylation (APA). Here, we used CRISPR/Cas9-mediated gene editing approach in human embryonic stem cells (hESCs) for CFIm25, and obtained three gene knockdown/mutant cell lines. CFIm25 gene editing resulted in higher proliferation rate and impaired differentiation potential for hESCs, with these effects likely to be directly regulated by the target genes, including the pluripotency factor rex1. Mechanistically, we unexpected found that perturbation in CFIm25 gene expression did not significantly affect cellular mRNA 3' processing efficiency and APA profile. Rather, we provided evidences that CFIm25 may impact RNA polymerase II (RNAPII) occupancy at the body of transcribed genes, and promote the expression level of a group of transcripts associated with cellular proliferation and/or differentiation. Taken together, these results reveal novel mechanisms underlying CFIm25's modulation in determination of cell fate, and provide evidence that the process of mammalian gene transcription may be regulated by an mRNA 3' processing factor.


Subject(s)
Polyadenylation , Stem Cells , Animals , Gene Knockdown Techniques , Humans , Mammals/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism
9.
Genes Dis ; 9(1): 62-79, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35005108

ABSTRACT

Age-related macular degeneration (AMD) is a complex eye disorder and is the leading cause of incurable blindness worldwide in the elderly. Clinically, AMD initially affects the central area of retina known as the macula and it is classified as early stage to late stage (advanced AMD). The advanced AMD is classified into the nonexudative or atrophic form (dry AMD) and the exudative or neovascular form (wet AMD). More severe vision loss is typically associated with the wet form. Multiple genetic factors, lipid metabolism, oxidative stress and aging, play a role in the etiology of AMD. Dysregulation in genetic to AMD is established to 46%-71% of disease contribution, with CFH and ARMS2/HTRA1 to be the two most notable risk loci among the 103 identified AMD associated loci so far. Chronic cigarette smoking is the most proven consistently risk living habits for AMD. Deep learning algorithm has been developed based on image recognition to distinguish wet AMD and normal macula with high accuracy. Currently, anti-vascular endothelial growth factor (VEGF) therapy is highly effective at treating wet AMD. Several new generation AMD drugs and iPSC-derived RPE cell therapy are in the clinical trial stage and are promising to improve AMD treatment in the near future.

10.
Molecules ; 26(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34500698

ABSTRACT

Polymeric adsorbents with different properties were synthesized via suspension polymerization. Equilibrium and kinetics experiments were then performed to verify the adsorption capacities of the resins for molecules of various sizes. The adsorption of small molecules reached equilibrium more quickly than the adsorption of large molecules. Furthermore, the resins with small pores are easy to lower their adsorption capacities for large molecules because of the pore blockage effect. After amination, the specific surface areas of the resins decreased. The average pore diameter decreased when the resin was modified with either primary or tertiary amines, but the pore diameter increased when the resin was modified with secondary amines. The phenol adsorption capacities of the amine-modified resins were reduced because of the decreased specific area. The amine-modified resins could more efficiently adsorb reactive brilliant blue 4 owing to the presence of polar functional groups.

11.
Aging (Albany NY) ; 13(10): 13968-14000, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33946050

ABSTRACT

Wet age-related macular degeneration (wAMD) causes central vision loss and represents a major health problem in elderly people. Here we have used untargeted metabolomics using UHPLC-MS to profile plasma from 127 patients with wAMD (67 choroidal neovascularization (CNV) and 60 polypoidal choroidal vasculopathy (PCV)) and 50 controls. A total of 545 biochemicals were detected. Among them, 17 metabolites presented difference between patients with wAMD and controls. Most of them were oxidized lipids (N=6, 35.29%). Comparing to controls, 28 and 18 differential metabolites were identified in patients with CNV and PCV, respectively. Two metabolites, hyodeoxycholic acid and L-tryptophanamide, were differently distributed between PCV and CNV. We first investigated the genetic association with metabolites in wet AMD (CFH rs800292 and HTRA1 rs10490924). We identified six differential metabolites between the GG and AA genotypes of CFH rs800292, five differential metabolites between the GG and AA genotypes of HTRA1 rs10490924, and four differential metabolites between the GG and GA genotypes of rs10490924. We selected four metabolites (cyclamic acid, hyodeoxycholic acid, L-tryptophanamide and O-phosphorylethanolamine) for in vitro experiments. Among them, cyclamic acid reduced the activity, inhibited the proliferation, increased the apoptosis and necrosis in human retinal pigment epithelial cells (HRPECs). L-tryptophanamide affected the proliferation, apoptosis and necrosis in HRPECs, and promoted the tube formation and migration in primary human retinal endothelial cells (HRECs). Hyodeoxycholic acid and O-phosphorylethanolamine inhibited the tube formation and migration in HRECs. The results suggested that differential metabolites have certain effects on wAMD pathogenesis-related HRPECs and HRECs.


Subject(s)
Biomarkers/blood , Macular Degeneration/blood , Macular Degeneration/metabolism , Metabolomics , Apoptosis , Bacteria/metabolism , Cell Proliferation , Choroidal Neovascularization/metabolism , Epithelial Cells/metabolism , Genetic Predisposition to Disease , Humans , Macular Degeneration/genetics , Metabolome , Molecular Sequence Annotation , Necrosis , Neovascularization, Physiologic , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , Retinal Pigment Epithelium/pathology , Signal Transduction
12.
Nano Lett ; 21(6): 2681-2689, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33522816

ABSTRACT

Biointerface sensors have brought about remarkable advances in modern biomedicine. To accurately monitor bioentity's behaviors, biointerface sensors need to capture three main types of information, which are the electric, spectroscopic, and morphologic signals. Simultaneously obtaining these three types of information is of critical importance in the development of future biosensor, which is still not possible in the existing biosensors. Herein, by synergizing metamaterials, optical, and electronic sensing designs, we proposed the metaoptronic multiplexed interface (MMI) and built a MMI biosensor which can collectively record electric, spectroscopic, and morphologic information on bioentities. The MMI biosensor enables the real-time triple-monitoring of cellular dynamics and opens up the possibility for powerlessly monitoring ocular dryness. Our findings not only demonstrate an advanced multiplexed biointerface sensor with integrated capacities but also help to identify a uniquely significant arena for the nanomaterials, meta-optics, and nanotechnologies to play their roles in a complementary manner.


Subject(s)
Biosensing Techniques , Nanostructures , Electronics , Monitoring, Physiologic , Optics and Photonics
13.
RNA Biol ; 18(11): 1512-1523, 2021 11.
Article in English | MEDLINE | ID: mdl-33416026

ABSTRACT

U1 snRNP is one of the most abundant ribonucleoprotein (RNP) complexes in eukaryotic cells and is estimated to be approximately 1 million copies per cell. Apart from its canonical role in mRNA splicing, this complex has emerged as a key regulator of eukaryotic mRNA length via inhibition of mRNA 3'-end processing at numerous intronic polyadenylation sites, in a process that is also termed 'U1 snRNP telescripting'. Several reviews have extensively described the concept of U1 telescripting and subsequently highlighted its potential impacts in mRNA metabolism. Here, we review what is currently known regarding the underlying mechanisms of this important phenomenon and discuss open questions and future challenges.


Subject(s)
Polyadenylation , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Animals , Humans , RNA Precursors/genetics , RNA, Messenger/genetics , Ribonucleoprotein, U1 Small Nuclear/genetics
14.
Diabetes Metab Syndr Obes ; 13: 4495-4505, 2020.
Article in English | MEDLINE | ID: mdl-33262625

ABSTRACT

PURPOSE: Chronic inflammation plays a key role in the pathogenesis of various diseases such as diabetic nephropathy (DN). Resveratrol (RSV), a natural polyphenol, has been proven to have renoprotective effects. In this study, we used a lipopolysaccharide (LPS)-induced rat glomerular mesangial cells (RMCs) model, to elucidate the renoprotective effect of RSV on sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate receptor 2 (S1P2)/NF-κB activation and the expression of downstream inflammatory mediators, such as intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS) and fibronectin (FN) protein expression in RMCs. METHODS: Cell proliferation was tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT). The protein levels of FN, ICAM-1, iNOS, SphK1, S1P2 and NF-κB p65 in RMCs were detected by Western blot. The DNA-binding activity of NF-κB was detected by electrophoretic mobility shift assay (EMSA). SphK1 activity and S1P content were measured by using sphingosine kinase activity assay kit and ELISA assay, respectively. RESULTS: We first found that LPS could stimulate SphK1/S1P axis activation, whereas this occurrence was significantly blocked by RSV pretreatment. RSV obviously repressed LPS-induced upregulated expression of fibronectin (FN), intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS) in RMCs. Moreover, RSV markedly reduced SphK1 activity and its protein expression, and attenuated S1P content in LPS-induced RMCs. Furthermore, RSV could block LPS-induced upregulation of NF-κB p65 and DNA-binding activity of NF-κB. And this phenomenon was notably attenuated by SphK1 inhibitor and S1P2 inhibitor. CONCLUSION: RSV inhibited LPS-induced RMCs' proliferation and inflammation and FN expression by SphK1/S1P2/NF-κB pathway, suggesting that RSV may be independent of its hypoglycemic effect on preventing or delaying the development of mesangial cell fibrosis.

15.
Biochem Biophys Res Commun ; 530(1): 196-202, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32828285

ABSTRACT

It is well established that U1 snRNP inhibits the cleavage of cryptic polyadenylation site (PAS) within introns, thereby facilitating full-length mRNA transcription for numerous genes in vertebrate cells, yet the underlying mechanism remains poorly understood. Here, by using a model PAS of wdr26 mRNA, we show that U1 snRNP predominantly interferes with the association of PAS with a core 3' processing factor CstF64, which can promote the cleavage step of mRNA 3' processing. Furthermore, we provide evidence that U1A, a component of U1 snRNP, might directly interfere with CstF64 binding on PAS through its RNA binding capacity. Consistently, U1A could potentially associate with U1-suppressed intronic PASs at the transcriptome level in human cells, showing a binding peak ∼50 nt downstream of the cleavage site, as revealed by U1A iCLIP-seq (individual-nucleotide resolution UV crosslinking and immunoprecipitation coupled with RNA sequencing) analysis. Together, our data suggest a molecular mechanism underlying U1 snRNP inhibition of the cleavage step of mRNA 3' processing. More generally, we argue that U1 snRNP might inhibit the usage of cryptic PASs through disturbing the recruitment of core 3' processing factors.


Subject(s)
RNA 3' End Processing , RNA, Messenger/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Adaptor Proteins, Signal Transducing/genetics , HeLa Cells , Humans , Polyadenylation , RNA Cleavage , RNA, Messenger/genetics
16.
Sci Rep ; 10(1): 9719, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546683

ABSTRACT

Glaucoma is the leading cause of irreversible blindness worldwide. The molecular etiology of glaucoma is complex and unclear. At present, there are few drugs available for glaucoma treatment. The aim of the present study was to perform a systematic analysis of glaucoma candidate drugs/chemicals based on glaucoma genes, including genetic factors and differentially expressed (DE) genes. In total, 401 genes from the genetic databases and 1656 genes from the DE gene analysis were included in further analyses. In terms of glaucoma-related genetic factors, 54 pathways were significantly enriched (FDR < 0.05), and 96 pathways for DE genes were significantly enriched (FDR < 0.05). A search of the PheWAS database for diseases associated with glaucoma-related genes returned 1,289 diseases, and a search for diseases associated with DE glaucoma-related genes returned 1,356 diseases. Cardiovascular diseases, neurodegenerative diseases, cancer, and ophthalmic diseases were highly related to glaucoma genes. A search of the DGIdb, KEGG, and CLUE databases revealed a set of drugs/chemicals targeting glaucoma genes. A subsequent analysis of the electronic medical records (EMRs) of 136,128 patients treated in Sichuan Provincial People's Hospital for candidate drug usage and the onset of glaucoma revealed nine candidate drugs. Among these drugs, individuals treated with nicardipine had the lowest incidence of glaucoma. Taken together with the information from the drug databases, the 40 most likely candidate drugs for glaucoma treatment were highlighted. Based on these findings, we concluded that the molecular mechanism of glaucoma is complex and may be a reflection of systemic diseases. A set of ready-to-use candidate drugs targeting glaucoma genes may be developed for glaucoma clinical drug treatments. Our results provide a systematic interpretation of glaucoma genes, interactions with other systemic diseases, and candidate drugs/chemicals.


Subject(s)
Glaucoma/drug therapy , Glaucoma/genetics , Glaucoma/metabolism , China , Databases, Factual , Drug Discovery/methods , Drug Discovery/trends , Humans
17.
Nanoscale ; 12(19): 10639-10646, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32373891

ABSTRACT

Multipole electromagnetic resonances and their couplings are of crucial importance for both the fundamental understanding of light scattering by high-index all-dielectric nanostructures and lots of nanophotonic applications based on those nanostructures. Here, we show that magnetic dipole modes in a dielectric nanodisk cluster can easily form a magnetic toroidal dipole (MTD) mode. The cluster consists of five silicon nanodisks, where each nanodisk holds a magnetic dipole mode. These magnetic dipole modes can collectively couple with each other and form a MTD mode under suitable excitation. The MTD mode is confirmed by multipole expansion calculations and near field distributions, where two closed loops of magnetic field with opposite directions are seen. The response of the MTD is strong and comparable to that of a common electric dipole or magnetic dipole mode. It is also found that the MTD resonance is accompanied by an electric toroidal quadrupole mode in the cluster. The MTD mode is tunable by varying the geometries. We also fabricated silicon nanoparticle clusters and verified the MTD mode in the experiment. Our results illustrate the controllable excitation of strong high-order electromagnetic modes and these modes may open new opportunities for light manipulation at the nanoscale.

18.
Nanoscale ; 12(13): 7035-7044, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32207505

ABSTRACT

Owing to the capacity of efficiently harvesting and converting incident energy, localized surface-plasmon resonance of noble metals was introduced into a metal-semiconductor design for promoting hydrogen evolution. In this study, a plasmonic nanodumbbell structure was employed to strategically modulate the energy transfer in the water reduction reaction. A maximum H2 evolution rate of 80 µmol g-1 h-1 was obtained in the Au-TiO2 nanodumbbells, and further improvement was achieved through surface modification with Pt nanoparticles functioning as active sites, leading to ∼4.3 times enhanced photocatalytic activity. Compared with similar nanostructures reported previously, the present superior photoactivity response is ascribed to the injection process of the energetic hot electrons generated from the excitation and decay of the longitudinal surface-plasmon resonance (LSPR) and transverse surface-plasmon resonance (TSPR) in the Au nanorods, which corresponds to the electric field distribution of the finite-difference-time-domain simulation. These intriguing results, originating from the positive synergistic effect of the plasmon and co-catalyst, demonstrated the mechanism of the plasmon-assisted photochemistry and provided a promising strategy for the rational design of novel plasmonic photocatalysts.

19.
RNA Biol ; 16(10): 1448-1460, 2019 10.
Article in English | MEDLINE | ID: mdl-31242075

ABSTRACT

It is increasingly appreciated that U1 snRNP transcriptomically suppresses the usage of intronic polyadenylation site (PAS) of mRNAs, an outstanding question is why frequently used PASs are not suppressed. Here we found that U1 snRNP could be transiently associated with sequences upstream of actionable PASs in human cells, and RNA-RNA interaction might contribute to the association. By focusing on individual PAS, we showed that the stable assembly of U1 snRNP near PAS might be generally required for U1 inhibition of mRNA 3' processing. Therefore, actionable PASs that often lack optimal U1 snRNP docking site nearby is free from U1 inhibitory effect. Consistently, natural 5' splicing site (5'-SS) is moderately enriched ~250 nt upstream of intronic PASs whose usage is sensitive to functional knockdown of U1 snRNA. Collectively, our results provided an insight into how U1 snRNP selectively inhibits the usage of PASs in a cellular context, and supported a prevailing model that U1 snRNP scans pre-mRNA through RNA-RNA interaction to find a stable interaction site to exercise its function in pre-mRNA processing, including repressing the usage of cryptic PASs.


Subject(s)
RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Binding Sites , Cell Line , Gene Expression , Genes, Reporter , Humans , Poly A , Polyadenylation , Protein Binding , RNA Precursors/genetics , RNA Splice Sites
20.
PLoS One ; 13(11): e0207444, 2018.
Article in English | MEDLINE | ID: mdl-30475846

ABSTRACT

Extracellular vesicles (EVs) are important mediators of intercellular communication and have been implicated in myriad physiologic and pathologic processes within the hematopoietic system. Numerous factors influence the ability of EVs to communicate with target marrow cells, but little is known about how circadian oscillations alter EV function. In order to explore the effects of daily rhythms on EV-mediated intercellular communication, we used a well-established model of lung-derived EV modulation of the marrow cell transcriptome. In this model, co-culture of whole bone marrow cells (WBM) with lung-derived EVs induces expression of pulmonary specific mRNAs in the target WBM. To determine if daily rhythms play a role in this phenotype modulation, C57BL/6 mice were entrained in 12-hour light/12-hour dark boxes. Lungs harvested at discrete time-points throughout the 24-hour cycle were co-cultured across a cell-impermeable membrane with murine WBM. Alternatively, WBM harvested at discrete time-points was co-cultured with lung-derived EVs. Target WBM was collected 24hrs after co-culture and analyzed for the presence of pulmonary specific mRNA levels by RT-PCR. In both cases, there were clear time-dependent variations in the patterns of pulmonary specific mRNA levels when either the daily time-point of the lung donor or the daily time-point of the recipient marrow cells was altered. In general, WBM had peak pulmonary-specific mRNA levels when exposed to lung harvested at Zeitgeber time (ZT) 4 and ZT 16 (ZT 0 defined as the time of lights on, ZT 12 defined as the time of lights off), and was most susceptible to lung-derived EV modulation when target marrow itself was harvested at ZT 8- ZT 12. We found increased uptake of EVs when the time-point of the receptor WBM was between ZT 20 -ZT 24, suggesting that the time of day-dependent changes in transcriptome modulation by the EVs were not due simply to differential EV uptake. Based on these data, we conclude that circadian rhythms can modulate EV-mediated intercellular communication.


Subject(s)
Bone Marrow Cells/metabolism , Circadian Rhythm , Extracellular Vesicles/metabolism , Lung/metabolism , RNA, Messenger/biosynthesis , Transcriptome , Animals , Bone Marrow Cells/cytology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...