Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Small ; : e2403828, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-39031862

ABSTRACT

The doping strategy effectively enhances the capacity and cycling stability of cobalt-free nickel-rich cathodes. Understanding the intrinsic contributions of dopants is of great importance to optimize the performances of cathodes. This study investigates the correlation between the structure modification and their performances of Mo-doped LiNi0.8Mn0.2O2 (NM82) cathode. The role of doped Mo's valence state has been proved functional in both lattice structural modification and electronic state adjustment. Although the high-valence of Mo at the cathode surface inevitably reduces Ni valence for electronic neutrality and thus causes ion mixing, the original Mo valence will influence its diffusion depth. Structural analyses reveal Mo doping leads to a mixed layer on the surface, where high-valence Mo forms a slender cation mixing layer, enhancing structural stability and Li-ion transport. In addition, it is found that the high-valence dopant of Mo6+ ions partially occupies the unfilled 4d orbitals, which may strengthen the Mo─O bond through increased covalency and therefore reduce the oxygen mobility. This results in an impressive capacity retention (90.0% after 200 cycles) for Mo-NM82 cathodes with a high Mo valence state. These findings underscore the valence effect of doping on layered oxide cathode performance, offering guidance for next-generation cathode development.

2.
Biomater Sci ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39077924

ABSTRACT

Diabetic wounds represent a common chronic condition, posing significant challenges in the treatment process due to bacterial infections, increased generation of reactive oxygen species (ROS) and exacerbated inflammation. Fenofibrate (FEN) is a clinical medication used for lipid regulation. In this study, it was utilized for the first time as an effective component of wound dressings for treating diabetic ulcers, exploring its novel applications further. Therefore, we prepared a polyvinyl alcohol/chitosan/FEN (PCF) hydrogel using a freeze-thaw method and conducted physicochemical characterization of the PCF hydrogel to further elucidate its biological functions. In vitro studies demonstrated that the PCF hydrogel exhibits excellent biocompatibility along with significant antimicrobial, pro-angiogenic, ROS-scavenging, and anti-inflammatory properties. Subsequent animal experiments indicated that the PCF hydrogel has the ability to promote blood vessel formation and collagen deposition. Additionally, the PCF hydrogel showed a significant inhibitory effect on the inflammatory response, as evidenced by the reductions in the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). These compelling findings accentuate the promising application of the PCF hydrogel in the treatment of diabetic wounds.

3.
Nanomicro Lett ; 16(1): 162, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530476

ABSTRACT

Zinc-air batteries (ZABs) are promising energy storage systems because of high theoretical energy density, safety, low cost, and abundance of zinc. However, the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs. Therefore, feasible and advanced non-noble-metal electrocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction. In this review, we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field. Then, we discussed the working mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design, crystal structure tuning, interface strategy, and atomic engineering. We also included theoretical studies, machine learning, and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions. Finally, we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.

4.
Plast Reconstr Surg ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38391208

ABSTRACT

BACKGROUND: Secondary lymphedema is a chronic, disabling disease impacting over 50% of patients with cancer and lacking effective pharmacological treatment even for early- to mid-disease stages. Metformin reportedly exerts anti-inflammatory and anti-fibrotic effects and is safe, with minimal side effects; We investigated the role of metformin in lymphedema mouse models and examined underlying molecular mechanisms. METHODS: Male C57BL/6 mice (6-8-week-old; n=15/group) received metformin (300 mg/kg/day) by gavage on day 3 after lymphedema surgery; saline and sham groups were administered the same volume of saline. Hindlimb circumference and tail volume were monitored every two days. On day 28, samples were collected for histological assessment, western blotting, and reverse transcription-quantitative PCR analysis of inflammation, fibrosis, and AMPK expression. AMPK activity was assayed in patients with secondary lymphedema (ISL II) and controls following strict inclusion criteria. RESULTS: Compared with the saline group, the metformin group exhibited hindlimb circumference and tail volume reduced by 469.70% and 305.18%, respectively. on day 28. Dermal thickness was reduced by 38.27% and 72.57% in the hindlimbs and tail, respectively. Metformin decreased CD4+ T cell infiltration by 19.73% and expression levels of interleukin (IL)-4, IL-13, IL-17, and transforming growth factor-ß1. Additionally, it lowered collagen I deposition by 33.18%. Compared with the saline group, the number of lymphatic vessels increased by 229.96% in the metformin group. Both the saline group mice and patients with lymphedema showed reduced AMPK activity, while metformin increased p-AMPK expression by 106.12%. CONCLUSION: Metformin alleviated inflammation and fibrosis and increased lymphangiogenesis in lymphedema mouse models by activating AMPK signaling.

5.
Adv Mater ; 36(19): e2312583, 2024 May.
Article in English | MEDLINE | ID: mdl-38302690

ABSTRACT

Hollow multishelled structures (HoMSs) are attracting great interest in lithium-ion batteries as the conversion anodes, owing to their superior buffering effect and mechanical stability. Given the synthetic challenges, especially elemental diffusion barrier in the multimetal combinations, this complex structure design has been realized in low- and medium-entropy compounds so far. It means that poor reaction reversibility and low intrinsic conductivity remain largely unresolved. Here, a hollow multishelled (LiFeZnNiCoMn)3O4 high entropy oxide (HEO) is developed through integrating molecule and microstructure engineering. As expected, the HoMS design exhibits significant targeting functionality, yielding satisfactory structure and cycling stability. Meanwhile, the abundant oxygen defects and optimized electronic structure of HEO accelerate the lithiation kinetics, while the retention of the parent lattice matrix enables reversible lithium storage, which is validated by rigorous in situ tests and theoretical simulations. Benefiting from these combined properties, such hollow multishelled HEO anode can deliver a specific capacity of 967 mAh g-1 (89% capacity retention) after 500 cycles at 0.5 A g-1. The synergistic lattice and volume stability showcased in this work holds great promise in guiding the material innovations for the next-generation energy storage devices.

6.
Adv Mater ; 36(19): e2313096, 2024 May.
Article in English | MEDLINE | ID: mdl-38308111

ABSTRACT

Despite the increasing effort in advancing oxygen electrocatalysts for zinc-air batteries (ZABs), the performance development gradually reaches a plateau via only ameliorating the electrocatalyst materials. Herein, a new class of external field-responsive electrocatalyst comprising Ni0.5Mn0.5Fe2O4 stably dispersed on N-doped Ketjenblack (Ni0.5Mn0.5Fe2O4/N-KB) is developed via polymer-assisted strategy for practical ZABs. Briefly, the activity indicator ΔE is significantly decreased to 0.618 V upon photothermal assistance, far exceeding most reported electrocatalysts (generally >0.680 V). As a result, the photothermal electrocatalyst possesses comprehensive merits of excellent power density (319 mW cm-2), ultralong lifespan (5163 cycles at 25 mA cm-2), and outstanding rate performance (100 mA cm-2) for liquid ZABs, and superb temperature and deformation adaptability for flexible ZABs. Such improvement is attributed to the photothermal-heating-enabled synergy of promoted electrical conductivity, reactant-molecule motion, active area, and surface reconstruction, as revealed by operando Raman and simulation. The findings open vast possibilities toward more-energy-efficient energy applications.

7.
Int J Food Microbiol ; 410: 110465, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37980812

ABSTRACT

The primary reason for postharvest loss is blue mold disease which is mainly caused by Penicillium expansum. Strategies for disease control greatly depend on the understanding of mechanisms of pathogen-fruit interaction. A member of the glycoside hydrolase family, ß-glucosidase 1b (eglB), in P. expansum was significantly upregulated during postharvest pear infection. Glycoside hydrolases are a large group of enzymes that can degrade plant cell wall polymers. High homology was found between the glycoside hydrolase superfamily in P. expansum. Functional characterization and analysis of eglB were performed via gene knockout and complementation analysis. Although eglB deletion had no notable effect on P. expansum colony shape or microscopic morphology, it did reduce the production of fungal hyphae, thereby reducing P. expansum's sporulation and patulin (PAT) accumulation. Moreover, the deletion of eglB (ΔeglB) reduced P. expansum pathogenicity in pears. The growth, conidia production, PAT accumulation, and pathogenicity abilities of ΔeglB were restored to that of wild-type P. expansum by complementation of eglB (ΔeglB-C). These findings indicate that eglB contributes to P. expansum's development and pathogenicity. This research is a contribution to the identification of key effectors of fungal pathogenicity for use as targets in fruit safety strategies.


Subject(s)
Malus , Patulin , Penicillium , Pyrus , Pyrus/microbiology , Glycoside Hydrolases , Fruit/microbiology , Penicillium/metabolism , Patulin/metabolism , Malus/microbiology
8.
Adv Mater ; 36(11): e2311105, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38085968

ABSTRACT

Developing commercially viable electrocatalyst lies at the research hotspot of rechargeable Zn-air batteries, but it is still challenging to meet the requirements of energy efficiency and durability in realistic applications. Strategic material design is critical to addressing its drawbacks in terms of sluggish kinetics of oxygen reactions and limited battery lifespan. Herein, a "raisin-bread" architecture is designed for a hybrid catalyst constituting cobalt nitride as the core nanoparticle with thin oxidized coverings, which is further deposited within porous carbon aerogel. Based on synchrotron-based characterizations, this hybrid provides oxygen vacancies and Co-Nx -C sites as the active sites, resulting from a strong coupling between CoOx Ny nanoparticles and 3D conductive carbon scaffolds. Compared to the oxide reference, it performs enhanced stability in harsh electrocatalytic environments, highlighting the benefits of the oxynitride. Furthermore, the 3D conductive scaffolds improve charge/mass transportation and boost durability of these active sites. Density functional theory calculations reveal that the introduced N species into hybrid can synergistically tune the d-band center of cobalt and improve its bifunctional activity. As a result, the obtained air cathode exhibits bifunctional overpotential of 0.65 V and a battery lifetime exceeding 1350 h, which sets a new record for rechargeable Zn-air battery reported so far.

9.
J Contam Hydrol ; 258: 104240, 2023 09.
Article in English | MEDLINE | ID: mdl-37683375

ABSTRACT

Toxic organic contaminants in groundwater are pervasive at many industrial sites worldwide. These contaminants, such as chlorinated solvents, often appear as dense non-aqueous phase liquids (DNAPLs). To design efficient remediation strategies, detailed characterization of DNAPL Source Zone Architecture (SZA) is required. Since invasive borehole-based investigations suffer from limited spatial coverage, a non-intrusive geophysical method, direct current (DC) resistivity, has been applied to image the DNAPL distribution; however, in clay-sand environments, the ability of DC resistivity for DNAPLs imaging is limited since it cannot separate between DNAPLs and surrounding clay-sand soils. Moreover, the simplified parameterization of conventional inversion approaches cannot preserve physically realistic patterns of SZAs, and tends to smooth out any sharp spatial variations. In this paper, the induced polarization (IP) technique is combined with DC resistivity (DCIP) to provide plausible DNAPL characterization in clay-sand environments. Using petrophysical models, the DCIP data is utilized to provide tomograms of the DNAPL saturation (SN) and hydraulic conductivity (K). The DCIP-estimated K/SN tomograms are then integrated with borehole measurements in a deep learning-based joint inversion framework to accurately parameterize the highly irregular SZA and provide a refined DNAPL image. To evaluate the performance of the proposed approach, we conducted numerical experiments in a heterogeneous clay-sand aquifer with a complex SZA. Results demonstrate the standalone DC resistivity method fails to infer the DNAPL in complex clay-sand environments. In contrast, the combined DCIP technique provides the necessary information to reconstruct the large-scale features of K/SN fields, while integrating DCIP data with sparse but accurate borehole data results in a high resolution characterization of the SZA.


Subject(s)
Groundwater , Water Pollutants, Chemical , Sand , Clay , Water Pollutants, Chemical/analysis
10.
J Am Chem Soc ; 145(37): 20248-20260, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37680056

ABSTRACT

As one of the promising sustainable energy storage systems, academic research on rechargeable Zn-air batteries has recently been rejuvenated following development of various 3d-metal electrocatalysts and identification of their dynamic reconstruction toward (oxy)hydroxide, but performance disparity among catalysts remains unexplained. Here, this uncertainty is addressed through investigating the anionic contribution to regulate dynamic reconstruction and battery behavior of 3d-metal selenides. Comparing with the alloy counterpart, anionic chemistry is identified as a performance promoter and further exploited to empower Zn-air batteries. Based on theoretical modeling, Se-resolved operando spectroscopy, and advanced electron microscopy, a three-step Se evolution is established, consisting of oxidation, leaching, and recoordination. The process generates an amorphous (oxy)hydroxide with O-sharing bonded Se motifs that triggers charge redistribution at metal sites and lowers the energetic barrier of their current-driven redox. A pervasive concept of Se back-feeding is then proposed to describe the underlying chemistry for 3d-metal selenides with diversity in crystals or compositions, and the feasibility to fine-tune their behavior is also presented.

11.
Clin Pharmacol Drug Dev ; 12(11): 1099-1103, 2023 11.
Article in English | MEDLINE | ID: mdl-37408364

ABSTRACT

The supply of branded 6-mercaptopurine (6-MP) is limited in China, necessitating the local production and clinical evaluation of generic alternatives. We evaluated the in vivo bioequivalence (BE) of a new generic mercaptopurine tablet (50 mg) formulation by comparing peak plasma concentration and area under the concentration-time curve (AUC) with a branded 6-MP formulation as the reference in 36 healthy fasting Chinese adults. The in vivo BE was evaluated by the average BE test. The safety parameters of the test and reference formulations were also evaluated. The geometric mean ratios for AUC over the dosing interval and AUC from time zero to infinity were 104% and 104%, respectively, of the reference values, while the point estimate of the geometric mean ratio for peak plasma concentration was 104% of the reference value. The test and reference formulations in this study were both deemed safe as only 23 Grade 1 adverse events were observed in 13 of 36 subjects. The test and reference formulations of 6-MP tablets meet the regulatory criteria for BE in healthy fasting Chinese adults.


Subject(s)
East Asian People , Mercaptopurine , Adult , Humans , Biological Availability , Fasting , Mercaptopurine/pharmacokinetics , Tablets , Therapeutic Equivalency , Volunteers
12.
ChemSusChem ; 16(7): e202202252, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36627241

ABSTRACT

Ni-rich cathode materials are considered promising candidates for next-generation lithium-ion batteries because of their high energy density and low cost. However, interphase failure at the surface of Ni-rich cathodes negatively impacts cycling performance, making it challenging to meet the requirements of long-term applications. In this study, a strategy is developed to improve interphase properties through introduction of a nucleophilic reaction-based additive, using an appropriate amount of the inducer lithium isopropoxide (LIP) in the commercial electrolyte to achieve long-term cycling stability of Li||LiNi0.83 Co0.11 Mn0.06 O2 (NCM83) cells. This strategy enables Li||NCM83 cells to maintain a capacity of 148.7 mAh g-1 with a retention of 83.3 % even after 500 cycles. This outstanding cycling stability is attributed to a robust cathode-electrolyte interphase (CEI) constructed on NCM83 surface LIP-induce ring-opening polymerization of ethylene carbonate (EC). As a result, the organic-inorganic components of the CEI effectively constrain gas evolution and the corresponding phase transformation behavior. Furthermore, the CEI also suppresses microcrack formation and eventually sustains the Ni valence and coordination environment at high voltage.

13.
Adv Mater ; 34(38): e2204637, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35948461

ABSTRACT

Electrochemical CO2 reduction to CO is a potential sustainable strategy for alleviating CO2 emission and producing valuable fuels. In the quest to resolve its current problems of low-energy efficiency and insufficient durability, a dual-scale design strategy is proposed by implanting a non-noble active Sn-ZnO heterointerface inside the nanopores of high-surface-area carbon nanospheres (Sn-ZnO@HC). The metal d-bandwidth tuning of Sn and ZnO alters the extent of substrate-molecule orbital mixing, facilitating the breaking of the *COOH intermediate and the yield of CO. Furthermore, the confinement effect of tailored nanopores results in a beneficial pH distribution in the local environment around the Sn-ZnO nanoparticles and protects them against leaching and aggregating. Through integrating electronic and nanopore-scale control, Sn-ZnO@HC achieves a quite low potential of -0.53 V vs reversible hydrogen electrode (RHE) with 91% Faradaic efficiency for CO and an ultralong stability of 240 h. This work provides proof of concept for the multiscale design of electrocatalysts.

14.
BMC Genom Data ; 23(1): 60, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35909123

ABSTRACT

BACKGROUND: Bladder cancer has the characteristics of high morbidity and mortality, and the prevalence of bladder cancer has been increasing in recent years. Immune and autophagy related genes play important roles in cancer, but there are few studies on their effects on the prognosis of bladder cancer patients. METHODS: Using gene expression data from the TCGA-BLCA database, we clustered bladder cancer samples into 6 immune-related and autophagy-related molecular subtypes with different prognostic outcomes based on 2208 immune-related and autophagy-related genes. Six subtypes were divided into two groups which had significantly different prognosis. Differential expression analysis was used to explore genes closely related to the progression of bladder cancer. Then we used Cox stepwise regression to define a combination of gene expression levels and immune infiltration indexes to construct the risk model. Finally, we built a Nomogram which consist of risk score and several other prognosis-related clinical indicators. RESULTS: The risk model suggested that high expression of C5AR2, CSF3R, FBXW10, FCAR, GHR, OLR1, PGLYRP3, RASGRP4, S100A12 was associated with poor prognosis, while high expression level of CD96, IL10, MEFV pointed to a better prognosis. Validation by internal and external dataset suggested that our risk model had a high ability to discriminate between the outcomes of patients with bladder cancer. The immunohistochemical results basically confirmed our results. The C-Index value and Calibration curves verified the robustness of Nomogram. CONCLUSIONS: Our study constructed a model that included a risk score for patients with bladder cancer, which provided a lot of helps to predict the prognosis of patients with bladder cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Urinary Bladder Neoplasms , Autophagy/genetics , Humans , Immunity/genetics , Nomograms , Prognosis , Pyrin , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/mortality , ras Guanine Nucleotide Exchange Factors
15.
Adv Mater ; 34(44): e2203417, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35901220

ABSTRACT

The construction of robust (quasi)-solid-state electrolyte (SSE) for flexible lithium-metal batteries is desirable but extremely challenging. Herein, a novel, flexible, and robust quasi-solid-state electrolyte (QSSE) with a "tree-trunk" design is reported for ultralong-life lithium-metal batteries (LMBs). An in-situ-grown metal-organic framework (MOF) layer covers the cellulose-based framework to form hierarchical ion-channels, enabling rapid ionic transfer kinetics and excellent durability. A conductivity of 1.36 × 10-3  S cm-1 , a transference number of 0.72, an electrochemical window of 5.26 V, and a good rate performance are achieved. The flexible LMBs fabricated with as-designed QSSEs deliver areal capacity of up to 3.1 mAh cm-2 at the initial cycle with high mass loading of 14.8 mg cm-2 in Li-NCM811 cells and can retain ≈80% capacity retention after 300 cycles. An ultralong-life of 3000 cycles (6000 h) is also achieved in Li-LiFePO4 cells. This work presents a promising route in constructing a flexible QSSE toward ultralong-life LMBs, and also provides a design rationale for material and structure development in the area of energy storage and conversion.

16.
ACS Sens ; 7(7): 2049-2057, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35820152

ABSTRACT

Uric acid (UA) is an important biomarker for many diseases. A sensitive point-of-care (POC) testing platform is designed for the digital quantification of salivary UA based on a colorimetric reaction on an easy-to-build smartphone-assisted microfluidic paper-based analytical device (SµPAD). UA levels are quantified according to the color intensity of Prussian blue on the SµPAD with the aid of a MATLAB code or a smartphone APP. A color correction method is specifically applied to exclude the light effect. Together with the engineering design of SµPADs, the background calibration function with the APP increases the UA sensitivity by 100-fold to reach 0.1 ppm with a linear range of 0.1-200 ppm. The assay time is less than 10 min. SµPADs demonstrate a correlation of 0.97 with a commercial UA kit for the detection of salivary UA in clinical samples. SµPADs provide a sensitive, fast, affordable, and reliable tool for the noninvasive POC quantification of salivary UA for early diagnosis of abnormal UA level-associated health conditions.


Subject(s)
Smartphone , Uric Acid , Colorimetry/methods , Paper , Point-of-Care Systems
17.
J Am Chem Soc ; 144(11): 4783-4791, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35192369

ABSTRACT

Metal-organic frameworks with tailorable coordination chemistry are propitious for regulating catalytic performance and deciphering genuine mechanisms. Herein, a linker compensation strategy is proposed to alter the intermediate adsorption free energy on the Co-Fe zeolitic imidazolate framework (CFZ). This grants zinc-air battery superior high current density capability with a small discharge-charge voltage gap of 0.88 V at 35 mA cm-2 and an hourly fading rate of less than 0.01% for over 500 h. Systematic characterization and theoretical modeling reveal that the performance elevation is closely correlated with the compensation of CFZ unsaturated metal nodes by S-bridging heterogeneous linkers, which exhibit electron-withdrawing characteristic that drives the delocalization of d-orbital electrons. These rearrangements of electronic structures establish a favorable adsorption/desorption pathway for key intermediates (OH*) and a stable coordination environment in bifunctional oxygen electrocatalysis.

18.
Reprod Sci ; 29(1): 193-202, 2022 01.
Article in English | MEDLINE | ID: mdl-34231170

ABSTRACT

Our previous study has shown that quercetin prevented lipopolysaccharide-induced preterm birth. This study aims to clarify the potential targets and biological mechanisms of quercetin in preventing preterm birth. We used bioinformatics databases to collect the candidate targets for quercetin and preterm birth. The biological functions and enriched pathways of the intersecting targets were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Then, the hub targets were identified by cytoscape plugin cytoHubba from the protein-protein interaction network. We obtained 105 targets for quercetin in preventing preterm birth. The biological processes of the intersecting targets are mainly involved in steroid metabolic process, drug metabolic process, oxidation-reduction process, omega-hydroxylase P450 pathway, positive regulation of cell migration, negative regulation of apoptotic process, and positive regulation of cell proliferation. The highly enriched pathways were steroid hormone biosynthesis, metabolism of xenobiotics by cytochrome P450, proteoglycans in cancer, focal adhesion, and arachidonic acid metabolism. The ten hub targets for quercetin in preventing preterm birth were AKT serine/threonine kinase 1, mitogen-activated protein kinase 3, epidermal growth factor receptor, prostaglandin-endoperoxide synthase 2, mitogen-activated protein kinase 1, estrogen receptor 1, heat shock protein 90 alpha family class A member 1, mitogen-activated protein kinase 8, androgen receptor, and matrix metallopeptidase 9. Molecular docking analysis showed good bindings between these proteins and quercetin. In conclusion, these findings highlight the key targets and molecular mechanisms of quercetin in preventing preterm birth.


Subject(s)
Premature Birth/prevention & control , Quercetin/therapeutic use , Computational Biology , Databases, Factual , Humans , Infant, Newborn , Molecular Docking Simulation , Protein Interaction Maps
19.
Front Psychol ; 12: 694974, 2021.
Article in English | MEDLINE | ID: mdl-34970178

ABSTRACT

This study aimed to investigate the status and risk factors of post-traumatic stress disorder (PTSD) in patients with acute myocardial infarction (AMI) after emergency percutaneous coronary intervention (PCI) in acute and convalescence phases. A longitudinal study design was used. Two questionnaire surveys were conducted in the acute stage of hospitalization, and 3 months after onset in patients. Logistic regression was used to analyze the risk factors for PTSD in AMI patients. The incidence of PTSD was 33.1 and 20.4% in acute and convalescent patients, respectively. The risk factors related to PTSD were door-to-balloon time (DTB) (≥92.6 min), left ventricular ejection fraction (LVEF) (<50%), smoking, anxiety, and depression. AMI patients after PCI had PTSD in the acute and convalescent stage. The findings indicate that tailored measures should be developed and carried out to prevent PTSD and improve the mental health of patients with AMI after undergoing PCI.

20.
Small Methods ; 5(6): e2100024, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34927909

ABSTRACT

Mn and N codoped carbon materials are proposed as one of the most promising catalysts for the oxygen reduction reaction (ORR) but still confront a lot of challenges to replace Pt. Herein, a novel gas-phase migration strategy is developed for the scale synthesis of atomically dispersed Mn and N codoped carbon materials (g-SA-Mn) as highly effective ORR catalysts. Porous zeolitic imidazolate frameworks serve as the appropriate support for the trapping and anchoring of Mn-containing gaseous species and the synchronous high-temperature pyrolysis process results in the generation of atomically dispersed Mn-Nx active sites. Compared to the traditional liquid phase synthesis method, this unique strategy significantly increases the Mn loading and enables homogeneous dispersion of Mn atoms to promote the exposure of Mn-Nx active sites. The developed g-SA-Mn-900 catalyst exhibits excellent ORR performance in the alkaline media, including a high half-wave potential (0.90 V vs reversible hydrogen electrode), satisfactory durability, and good catalytic selectivity. In the practical application, the Zn-air battery assembled with g-SA-Mn-900 catalysts shows high power density and prominent durability during the discharge process, outperforming the commercial Pt/C benchmark. Such a gas-phase synthetic methodology offers an appealing and instructive guide for the logical synthesis of atomically dispersed catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL