Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters










Publication year range
1.
Food Funct ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767386

ABSTRACT

Deoxynivalenol (DON) is a prevalent mycotoxin that primarily contaminates cereal crops and animal feed, posing a significant risk to human and animal health. In recent years, an increasing number of Devosia strains have been identified as DON degradation bacteria, and significant efforts have been made to explore their potential applications in the food and animal feed industries. However, the characteristics and mechanisms of DON degradation in Devosia strains are still unclear. In this study, we identified a novel DON degrading bacterium, Devosia sp. D-G15 (D-G15), from soil samples. The major degradation products of DON in D-G15 were 3-keto-DON, 3-epi-DON and an unidentified product, compound C. The cell viability assay showed that the DON degradation product of D-G15 revealed significantly reduced toxicity to HEK293T cells compared to DON. Three enzymes for DON degradation were further identified, with G15-DDH converting DON to 3-keto-DON and G15-AKR1/G15-AKR6 reducing 3-keto-DON to 3-epi-DON. Interestingly, genome comparison of Devosia strains showed that the pyrroloquinoline quinone (PQQ) synthesis gene cluster is a unique feature of DON degradation strains. Subsequently, adding PQQ to the cultural media of Devosia strains without PQQ synthesis genes endowed them with DON degradation activity. Furthermore, a novel DON-degrading enzyme G13-DDH (<30% homology with known DON dehydrogenase) was identified from a Devosia strain that lacks PQQ synthesis ability. In summary, a novel DON degrading Devosia strain and its key enzymes were identified, and PQQ production was found as a distinct feature among Devosia strains with DON degradation activity, which is important for developing Devosia strain-based technology in DON detoxification.

2.
J Agric Food Chem ; 72(4): 2334-2346, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38235998

ABSTRACT

The metabolic transformation of aflatoxin B1 (AFB1) in pigs remains understudied, presenting a gap in our toxicological understanding compared with extensive human-based research. Here, we found that the main products of AFB1 in porcine liver microsomes (PLMs) were AFB1-8,9-epoxide (AFBO), the generation of which correlated strongly with the protein levels and activities of cytochrome P450 (CYP)3A and CYP2A. In addition, we found that porcine CYP2A19 can transform AFB1 into AFBO, and its metabolic activity was stronger than the other CYPs we have reported, including CYP1A2, CYP3A29, and CYP3A46. Furthermore, we stably transfected all identified CYPs in HepLi cells and found that CYP2A19 stable transfected HepLi cells showed more sensitivity in AFB1-induced DNA adducts, DNA damage, and γH2AX formation than the other three stable cell lines. Moreover, the CYP2A19 N297A mutant that lost catalytic activity toward AFB1 totally eliminated AFB1-induced AFB1-DNA adducts and γH2AX formations in CYP2A19 stable transfected HepLi cells. These results indicate that CYP2A19 mainly mediated AFB1-induced cytotoxicity through metabolizing AFB1 into a highly reactive AFBO, promoting DNA adduct formation and DNA damage, and lastly leading to cell death. This study advances the current understanding of AFB1 bioactivation in pigs and provides a promising target to reduce porcine aflatoxicosis.


Subject(s)
Aflatoxin B1 , Cytochrome P-450 Enzyme System , Humans , Animals , Swine , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism , Cytochrome P-450 CYP3A/metabolism , Microsomes, Liver/metabolism , DNA Adducts/metabolism
3.
NPJ Biofilms Microbiomes ; 9(1): 94, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062054

ABSTRACT

Urban microbiome plays crucial roles in human health and are related to various diseases. The MetaSUB Consortium has conducted the most comprehensive global survey of urban microbiomes to date, profiling microbial taxa/functional genes across 60 cities worldwide. However, the influence of environmental/demographic factors on urban microbiome remains to be elucidated. We collected 35 environmental and demographic characteristics to examine their effects on global urban microbiome diversity/composition by PERMANOVA and regression models. PM10 concentration was the primary determinant factor positively associated with microbial α-diversity (observed species: p = 0.004, ß = 1.66, R2 = 0.46; Fisher's alpha: p = 0.005, ß = 0.68, R2 = 0.43), whereas GDP per capita was negatively associated (observed species: p = 0.046, ß = -0.70, R2 = 0.10; Fisher's alpha: p = 0.004, ß = -0.34, R2 = 0.22). The ß-diversity of urban microbiome was shaped by seven environmental characteristics, including Köppen climate type, vegetation type, greenness fraction, soil type, PM2.5 concentration, annual average precipitation and temperature (PERMANOVA, p < 0.001, R2 = 0.01-0.06), cumulatively accounted for 20.3% of the microbial community variance. Canonical correspondence analysis (CCA) identified microbial species most strongly associated with environmental characteristic variation. Cities in East Asia with higher precipitation showed an increased abundance of Corynebacterium metruchotii, and cities in America with a higher greenness fraction exhibited a higher abundance of Corynebacterium casei. The prevalence of antimicrobial resistance (AMR) genes were negatively associated with GDP per capita and positively associated with solar radiation (p < 0.005). Total pathogens prevalence was positively associated with urban population and negatively associated with average temperature in June (p < 0.05). Our study presents the first comprehensive analysis of the influence of environmental/demographic characteristics on global urban microbiome. Our findings indicate that managing air quality and urban greenness is essential for regulating urban microbial diversity and composition. Meanwhile, socio-economic considerations, particularly reducing antibiotic usage in regions with lower GDP, are paramount in curbing the spread of antimicrobial resistance in urban environments.


Subject(s)
Anti-Bacterial Agents , Microbiota , Humans , Virulence , Drug Resistance, Bacterial , Demography
4.
Biochem Pharmacol ; 214: 115645, 2023 08.
Article in English | MEDLINE | ID: mdl-37321415

ABSTRACT

Cells adapt to stress conditions by increasing glucose uptake as cytoprotective strategy. The efficiency of glucose uptake is determined by the translocation of glucose transporters (GLUTs) from cytosolic vesicles to cellular membranes in many tissues and cells. GLUT translocation is tightly controlled by the activation of Tre-2/BUB2/CDC16 1 domain family 4 (TBC1D4) via its phosphorylation. The mechanisms of glucose uptake under stress conditions remain to be clarified. In this study, we surprisingly found that glucose uptake is apparently increased for the early response to three stress stimuli, glucose starvation and the exposure to lipopolysaccharide (LPS) or deoxynivalenol (DON). The stress-induced glucose uptake was mainly controlled by the increment of ß-catenin level and the activation of RSK1. Mechanistically, ß-catenin directly interacted with RSK1 and TBC1D4, acting as the scaffold protein to recruit activated RSK1 to promote the phosphorylation of TBC1D4. In addition, ß-catenin was further stabilized due to the inhibition of GSK3ß kinase activity which is caused by activated RSK1 phosphorylating GSK3ß at Ser9. In general, this triple protein complex consisting of ß-catenin, phosphorylated RSK1, and TBC1D4 were increased in the early response to these stress signals, and consequently, further promoted the phosphorylation of TBC1D4 to facilitate the translocation of GLUT4 to the cell membrane. Our study revealed that the ß-catenin/RSK1 axis contributed to the increment of glucose uptake for cellular adaption to these stress conditions, shedding new insights into cellular energy utilization under stress.


Subject(s)
GTPase-Activating Proteins , beta Catenin , Animals , Glycogen Synthase Kinase 3 beta/metabolism , GTPase-Activating Proteins/metabolism , beta Catenin/metabolism , Biological Transport , Phosphorylation , Glucose/metabolism , Mammals/metabolism
5.
Res Microbiol ; 174(7): 104090, 2023.
Article in English | MEDLINE | ID: mdl-37356781

ABSTRACT

Probiotic products containing living microorganisms are gaining popularity, increasing the importance of their taxonomic status. A Bacillus-like isolate, 70 b, cultured from a probiotic feed additive, was ambiguity in taxonomic assignment and could be a novel member of Bacillus cereus group. The results of colony and cellular morphology, physiological and biochemical analysis mainly including growth performance, carbon source utilization, and rMLST and MLST were not conclusive. Fatty acids profile and molecular genetic analysis especially ANI, DDH, and core genome SNPs-based phylogenetic tree confirmed 70 b as one novel species of B. cereus group and proposed as Bacillus pfraonensis sp. nov. Comparative genomic analysis revealed the genetic differences between 70 b and other species of B. cereus group. Pseudomycoicidin was identified in 70 b. 70 b was active against multidrug-resistant pathogenic strains MRSA. The findings support 70 b is a novel species with low cytotoxicity and antimicrobial activity, and provides a better understanding of its unique characteristics and probiotic potential, and exploration of bioactive potential.

6.
Food Chem ; 423: 136274, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37159968

ABSTRACT

Deoxynivalenol (DON) is the most frequently contaminated mycotoxin in food and feed worldwide, causing significant economic losses and health risks. Physical and chemical detoxification methods are widely used, but they cannot efficiently and specifically remove DON. In the study, the combination of bioinformatics screening and experimental verification confirmed that sorbose dehydrogenase (SDH) can effectively convert DON to 3-keto-DON and a substance that removes four hydrogen atoms for DON. Through rational design, the Vmax of the mutants F103L and F103A were increased by 5 and 23 times, respectively. Furthermore, we identified catalytic sites W218 and D281. SDH and its mutants have broad application conditions, including temperature ranges of 10-45 °C and pH levels of 4-9. Additionally, the half-lives of F103A at 90 °C (processing temperature) and 30 °C (storage temperature) were 60.1 min and 100.5 d, respectively. These results suggest that F103A has significant potential in the detoxification application of DON.


Subject(s)
Carbohydrate Dehydrogenases , Mycotoxins , Temperature , Food Contamination/analysis
7.
Metabolites ; 13(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37233642

ABSTRACT

Human AKR 7A2 broadly participates in the metabolism of a number of exogenous and endogenous compounds. Azoles are a class of clinically widely used antifungal drugs, which are usually metabolized by CYP 3A4, CYP2C19, and CYP1A1, etc. in vivo. The azole-protein interactions that human AKR7A2 participates in remain unreported. In this study, we investigated the effect of the representative azoles (miconazole, econazole, ketoconazole, fluconazole, itraconazole, voriconazole, and posaconazole) on the catalysis of human AKR7A2. The steady-state kinetics study showed that the catalytic efficiency of AKR7A2 enhanced in a dose-dependent manner in the presence of posaconazole, miconazole, fluconazole, and itraconazole, while it had no change in the presence of econazole, ketoconazole, and voriconazole. Biacore assays demonstrated that all seven azoles were able to specifically bind to AKR7A2, among which itraconazole, posaconazole, and voriconazole showed the strongest binding. Blind docking predicted that all azoles were apt to preferentially bind at the entrance of the substrate cavity of AKR7A2. Flexible docking showed that posaconazole, located at the region, can efficiently lower the binding energy of the substrate 2-CBA in the cavity compared to the case of no posaconazole. This study demonstrates that human AKR7A2 can interact with some azole drugs, and it also reveals that the enzyme activity can be regulated by some small molecules. These findings will enable a better understanding of azole-protein interactions.

8.
Ecotoxicol Environ Saf ; 259: 115028, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37216862

ABSTRACT

The T-2 toxin and deoxynivalenol (DON), as the most concerned members of trichothecenes, induce cellular stress responses and various toxic effects. Stress granules (SGs) are rapidly formed in response to stress and play an important role in the cellular stress response. However, it is not known whether T-2 toxin and DON induce SG formation. In this study, we found that T-2 toxin induces SG formation, while DON surprisingly suppresses SG formation. Meanwhile, we discovered that SIRT1 co-localized with SGs and regulated SG formation by controlling the acetylation level of the SG nucleator G3BP1. Upon T-2 toxin, the acetylation level of G3BP1 increased, but the opposite change was observed upon DON. Importantly, T-2 toxin and DON affect the activity of SIRT1 via changing NAD+ level in a different manner, though the mechanism remains to be clarified. These findings suggest that the distinct effects of T-2 toxin and DON on SG formation are caused by changes in the activity of SIRT1. Furthermore, we found that SGs increase the cell toxicity of T-2 toxin and DON. In conclusion, our results reveal the molecular regulation mechanism of TRIs on SG formation and provide novel insights into the toxicological mechanisms of TRIs.


Subject(s)
T-2 Toxin , T-2 Toxin/toxicity , DNA Helicases/metabolism , RNA Recognition Motif Proteins , RNA Helicases/metabolism , Sirtuin 1 , Stress Granules , Poly-ADP-Ribose Binding Proteins
9.
Biochem Pharmacol ; 211: 115506, 2023 05.
Article in English | MEDLINE | ID: mdl-36948362

ABSTRACT

T-2 toxin is a hazardous environmental pollutant that poses a risk to both farm animals and humans. Our previous research has reported that T-2 toxin highly induced the expression of human cytochrome P450 1A1 (CYP1A1), which may be a representative inducible marker of T-2 toxin and mediate the toxicity of T-2 toxin. In this study, we found that T-2 toxin decreased the DNA methylation levels of the CpG islands on the CYP1A1 promoter by inducing the expression of eleven translocation family protein 3 (TET3) and facilitating its binding to the promoter. These DNA methylation changes then generated an activated chromatin structure on the CYP1A1 promoter by releasing the repressor complex methyl-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2), increasing the active histone modification markers, including H3K4ac, H3K9ac and H3K14ac, and facilitating RNA pol II and NRF1/Sp1 recruitment, which ultimately led to the transcriptional activation of CYP1A1. Interestingly, TET3-mediated CYP1A1 induction enhanced the cytotoxicity of T-2 toxin through inhibiting cell proliferation. Our results demonstrate that T-2 toxin-induced CYP1A1 expression is detrimental to cells and clearly show how T-2 toxin inhibits cell proliferation through regulating CYP1A1 expression from an epigenetic perspective. The findings broaden our current knowledge of the epigenetic mechanisms regulating environmental factors-induced CYP1A1 expression and cytotoxicity. TET3 may serve as a potential new target for toxicogenic detoxification.


Subject(s)
Dioxygenases , T-2 Toxin , Animals , Humans , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Hep G2 Cells , Chromatin Assembly and Disassembly , T-2 Toxin/toxicity , DNA Demethylation , DNA Methylation , Dioxygenases/genetics , Dioxygenases/metabolism
10.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1441-1452, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36305724

ABSTRACT

Transcription factors, human E26 transcription factor 1 (Ets1) and specific protein 1 (Sp1), are known to induce gene expression in tumorigenicity. High Ets1 expression is often associated with colorectal tumorigenesis. In this study, we discover that metastasis and clone formation in SW480 cells mainly depend on the direct interaction between Ets1 and Sp1 instead of high Ets1 expression. The interaction domains are further addressed to be the segment at Sp1(626-708) and the segment at Ets1(244-331). In addition, the phosphorylation inhibition of Ets1 at Tyr283 by either downregulation of Src kinase or Src family inhibitor treatment decreases the interaction between Sp1 and Ets1 and suppresses SW480 migration. Either administration or overexpression of the peptides harboring the interaction segment strongly inhibits the colony formation and migration of SW480 cells. Our findings suggest that the interaction between Ets1 and Sp1 rather than Ets1 alone promotes transformation in SW480 cells and provide new insight into the Ets1 and Sp1 interaction as an antitumour target in SW480 cells.


Subject(s)
Cell Movement , Proto-Oncogene Protein c-ets-1 , Sp1 Transcription Factor , Humans , Cell Line, Tumor , Phosphorylation , Proto-Oncogene Protein c-ets-1/metabolism , Sp1 Transcription Factor/metabolism
11.
Arch Toxicol ; 96(11): 3091-3112, 2022 11.
Article in English | MEDLINE | ID: mdl-35925383

ABSTRACT

Deoxynivalenol (DON), a frequent food and feed contaminant, poses a severe threat to human and livestock health. Some studies have demonstrated that DON could induce liver damage and cell death. However, novel cell death styles and detailed mechanisms to explain DON-induced liver inflammatory injury are still lacking. Here, we found both chronic and subacute oral administration of DON (3 mg/kg for 4 weeks and 4 mg/kg for 8 days) induced mouse liver inflammatory injury and activated caspase-3, PARP and gasdermin E (GSDME), which were inhibited by caspase-3 inhibitor Z-DEVD and Ac-DEVD. In vitro, HepaRG cells showed typical pyroptotic characteristics after 32 and 64 µM DON exposure for 24 h, including balloon-like bubbling emerging, release of lactate dehydrogenase (LDH), secretion of IL-1ß and IL-6 and activation of caspase-3 and GSDME. Furthermore, knocking down GSDME and inhibiting caspases activity by Z-VAD and Z-DEVD dramatically blocked DON-induced pyroptotic characteristics, while over-expressed GSDME prompted that. These data demonstrate that caspase-3/GSDME pathway plays a key factor in DON-induced pyroptosis and inflammation in liver. Interestingly, knocking down GSDME could inhibit DON-induced pyroptosis but prompt DON-induced apoptosis, while opposite results were obtained when over-expressed GSDME, indicating the critical role of GSDME in DON-induced crosstalk between apoptosis and pyroptosis. Taken together, our data determine DON-induced caspase-3/GSDME-dependent pyroptosis in liver and its role in DON-induced liver inflammatory injury, which provide a novel mechanistic view into DON-induced hepatotoxicity and may offer a new target to reduce latent harm of DON to both humans and animals.


Subject(s)
Interleukin-6 , Pyroptosis , Animals , Caspase 3/metabolism , Humans , Inflammation/chemically induced , Lactate Dehydrogenases , Liver/metabolism , Mice , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Receptors, Estrogen/metabolism , Trichothecenes
12.
Arch Toxicol ; 96(10): 2639-2654, 2022 10.
Article in English | MEDLINE | ID: mdl-35900469

ABSTRACT

Deoxynivalenol (DON) is the most widespread mycotoxin in food and feedstuffs, posing a persistent health threat to humans and farm animals. The susceptibilities of DON vary significantly among animals, following the order of pigs, mice/rats and poultry from the most to least susceptible. However, no study comprehensively disentangles factors shaping species-specific sensitivity. In this review, the toxicokinetics and metabolism of DON are summarized in animals and humans. Generally, DON is fast-absorbed and widely distributed in multiple organs. DON is first enriched in the plasma, liver and kidney and subsequently accumulates in the intestine. There are also key variations among animals. Pigs and humans are highly sensitive to DON, and they have similar absorption rates (1 h < tmax < 4 h), high bioavailability (> 55%) and long clearance time (2 h < t1/2 < 4 h). Also, both species lack detoxification microorganisms and mainly depend on liver glucuronidation and urine excretion. Mice and rats have similar toxicokinetics (tmax < 0.5 h, t1/2 < 1 h). However, a higher proportion of DON is excreted by feces as DOM-1 in rats than in mice, suggesting an important role of gut microbiota in rats. Poultry is least sensitive to DON due to their fast absorption rate (tmax < 1 h), low oral bioavailability (5-30%), broadly available detoxification gut microorganisms and short clearance time (t1/2 < 1 h). Aquatic animals have significantly slower plasma clearance of DON than land animals. Overall, studies on toxicokinetics provide valuable information for risk assessment, prevention and control of DON contamination.


Subject(s)
Mycotoxins , Animals , Biological Availability , Feces , Humans , Mice , Mycotoxins/metabolism , Rats , Swine , Toxicokinetics , Trichothecenes
13.
Biochem Pharmacol ; 199: 115005, 2022 05.
Article in English | MEDLINE | ID: mdl-35318037

ABSTRACT

Aflatoxins B1 (AFB1) is a hepatoxic compound produced by Aspergillus flavus and Aspergillus parasiticus, seriously threatening food safety and the health of humans and animals. Understanding the metabolism of AFB1 is important for developing detoxification and intervention strategies. In this review, we summarize the AFB1 metabolic fates in humans and animals and the key enzymes that metabolize AFB1, including cytochrome P450s (CYP450s) for AFB1 bioactivation, glutathione-S-transferases (GSTs) and aflatoxin-aldehyde reductases (AFARs) in detoxification. Furthermore, AFB1 metabolism in microbes is also summarized. Microorganisms specifically and efficiently transform AFB1 into less or non-toxic products in an environmental-friendly approach which could be the most desirable detoxification strategy in the future. This review provides a wholistic insight into the metabolism and biotransformation of AFB1 in various organisms, which also benefits the development of protective strategies in humans and animals.


Subject(s)
Aflatoxin B1 , Aspergillus flavus , Aflatoxin B1/metabolism , Animals , Aspergillus flavus/metabolism , Biotransformation , Cytochrome P-450 Enzyme System/metabolism
14.
mLife ; 1(2): 183-197, 2022 Jun.
Article in English | MEDLINE | ID: mdl-37731585

ABSTRACT

Gut microbiota composition is suggested to associate with coronavirus disease 2019 (COVID-19) severity, but the impact of gut microbiota on health outcomes is largely unclear. We recruited 81 individuals from Wuhan, China, including 13 asymptomatic infection cases (Group A), 24 COVID-19 convalescents with adverse outcomes (Group C), 31 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) re-positive cases (Group D), and 13 non-COVID-19 healthy controls (Group H). The microbial features of Groups A and D were similar and exhibited higher gut microbial diversity and more abundant short-chain fatty acid (SCFA)-producing species than Group C. Group C was enriched with opportunistic pathogens and virulence factors related to adhesion and toxin production. The abundance of SCFA-producing species was negatively correlated, while Escherichia coli was positively correlated with adverse outcomes. All three groups (A, C, and D) were enriched with the mucus-degrading species Akkermansia muciniphila, but decreased with Bacteroides-encoded carbohydrate-active enzymes. The pathways of vitamin B6 metabolic and folate biosynthesis were decreased, while selenocompound metabolism was increased in the three groups. Specifically, the secondary bile acid (BA) metabolic pathway was enriched in Group A. Antibiotic resistance genes were common among the three groups. Conclusively, the gut microbiota was related to the health outcomes of COVID-19. Dietary supplementations (SCFAs, BA, selenium, folate, vitamin B6) may be beneficial to COVID-19 patients.

15.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502057

ABSTRACT

Cereulide is one of the main food-borne toxins for vomiting synthesized by Bacillus cereus, and it widely contaminates meat, eggs, milk, and starchy foods. However, the toxicological effects and mechanisms of the long-time exposure of cereulide in vivo remain unknown. In this study, oral administration of 50 and 200 µg/kg body weight cereulide in the mice for 28 days caused oxidative stress in liver and kidney tissues and induce abnormal expression of inflammatory factors. In pathogenesis, cereulide exposure activated endoplasmic reticulum stress (ER stress) via the pathways of inositol-requiring enzyme 1α (IRE1α)/Xbox binding protein (XBP1) and PRKR-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (eIF2α), and consequently led to the apoptosis and tissue damages in mouse liver and kidney. In vitro, we confirmed that the accumulation of reactive oxygen species (ROS) caused by cereulide is the main factor leading to ER stress in HepaRG and HEK293T cells. Supplementation of sodium butyrate (NaB) inhibited the activations of IRE1α/XBP1 and PERK/eIF2α pathways caused by cereulide exposure in mice, and reduced the cell apoptosis in liver and kidney. In conclusion, this study provides a new insight in understanding the toxicological mechanism and prevention of cereulide exposure.


Subject(s)
Bacterial Toxins/toxicity , Depsipeptides/toxicity , Kidney/drug effects , Liver/drug effects , Animals , Apoptosis , Cell Line, Tumor , Endoplasmic Reticulum Stress , HEK293 Cells , Humans , Kidney/metabolism , Liver/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , X-Box Binding Protein 1/metabolism , eIF-2 Kinase/metabolism
16.
Nanoscale ; 13(36): 15471-15480, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34515273

ABSTRACT

Rare earth (RE) materials such as neodymium (Nd) and others consist of unique electronic configurations which result in unique electronic, electrochemical, and photonic properties. The high temperature (>1100 °C) growth and low active surface areas of REs hinder their use as an efficient electrocatalyst. Herein, different morphologies of Nd were successfully fabricated in situ on the surface of graphene using a double-zone chemical vapor deposition (CVD) method. The morphology of the Nd material on graphene is controlled, which results in the significant enhancement of the large specific surface area and electrochemical active area of the composite material due to the spatial morphology of Nd, thereby improving the hydrogen evolution reaction (HER) performance in an alkaline medium. The significantly enhanced HER activity with an overpotential of 75 mV and a Tafel slope of 95 mV dec-1 at a current density of 10 mA cm-2 is observed in Nd-GF. Mainly, a high specific surface area of ∼2217 cm2 g-1 and the porosity of graphene play major roles in the enhancement of activity. Thus, the present work provides a new strategy for the neodymium engineering synthesis of efficient rare earth-graphene composite electrocatalysts with a high electrochemical active area.

17.
Int J Mol Sci ; 22(15)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34360702

ABSTRACT

T-2 toxin is mainly produced by Fusarium species, which is an extremely toxic mycotoxin to humans and animals. It is well known that T-2 toxin induces oxidative stress, but the molecular mechanism is still unknown. In this study, we found that T-2 toxin significantly promoted reactive oxygen species (ROS) accumulation in MCF-7 cells at low doses which maintains cell viability at least 80%. Further analysis showed that T-2 toxin downregulated the expression of the master regulator of antioxidant defense gene, nuclear factor erythroid 2-related factor (Nrf2), and its targeted antioxidant genes. Overexpression of Nrf2 or its target gene heme oxygenase 1 (HO1) significantly blocked the ROS accumulation in MCF-7 cells under T-2 toxin treatment. Moreover, we found that T-2 toxin downregulated the antioxidant genes via inducing the expression of ATF3ΔZip2a/2b. Importantly, overexpression of ATF3ΔZip2a/2b promoted the ubiquitination and degradation of Nrf2. Altogether, our results demonstrated that T-2 toxin-induced ROS accumulation via ATF3ΔZip2a/2b mediated ubiquitination and degradation of Nrf2, which provided a new insight into the mechanism of T-2 toxin-induced oxidative stress.


Subject(s)
Activating Transcription Factor 3/metabolism , Cation Transport Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , T-2 Toxin/pharmacology , Ubiquitination , Female , Humans , MCF-7 Cells , Signal Transduction , T-2 Toxin/toxicity
18.
Environ Pollut ; 288: 117814, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34329069

ABSTRACT

Known as a cause of food poisoning, Bacillus cereus (B. cereus) is widespread in nature. Cereulide, the heat-stable and acid-resistant emetic toxin which is produced by some B. cereus strains, is often associated with foodborne outbreaks, and causes acute emetic toxicity at high dosage exposure. However, the toxicological effect and underlying mechanism caused by chronic low-dose cereulide exposure require to be further addressed. In the study, based on mouse model, cereulide exposure (50 µg/kg body weight) for 28 days induced intestinal inflammation, gut microbiota dysbiosis and food intake reduction. According to the cell models, low dose cereulide exposure disrupted the intestinal barrier function and caused intestinal inflammation, which were resulted from endoplasmic reticulum (ER) stress IRE1/XBP1/CHOP pathway activation to induce cell apoptosis and inflammatory cytokines production. For gut microbiota, cereulide decreased the abundances of Lactobacillus and Oscillospira. Furthermore, cereulide disordered the metabolisms of gut microbiota, which exhibited the inhibitions of butyrate and tryptophan. Interestingly, cereulide exposure also inhibited the tryptophan hydroxylase to produce the serotonin in the gut and brain, which might lead to depression-like food intake reduction. Butyrate supplementation (100 mg/kg body weight) significantly reduced intestinal inflammation and serotonin biosynthesis suppression caused by cereulide in mice. In conclusion, chronic cereulide exposure induced ER stress to cause intestinal inflammation, gut microbiota dysbiosis and serotonin biosynthesis suppression. IRE1 could be the therapeutic target and butyrate supplementation is the potential prevention strategy.


Subject(s)
Gastrointestinal Microbiome , Animals , Bacillus cereus , Depsipeptides , Dysbiosis/chemically induced , Food Contamination/analysis , Inflammation/chemically induced , Mice
19.
Front Cell Dev Biol ; 9: 681839, 2021.
Article in English | MEDLINE | ID: mdl-34179010

ABSTRACT

Comparative epigenomics provides new insights on evolutionary biology in relation with complex interactions between species and their environments. In the present study, we focus on deciphering the conservation and divergence of DNA methylomes during Trichinella evolution. Whole-genome bisulfite sequencing and RNA-seq were performed on the two clades of Trichinella species, in addition to whole-genome sequencing. We demonstrate that methylation patterns of sing-copy orthologous genes (SCOs) of the 12 Trichinella species are host-related and can mirror known phylogenetic relationships. Among these SCOs, we identify a panel of genes exhibiting hyper-/hypo-methylated features in gene-bodies or respective promoters that play pivotal roles in transcriptome regulation. These hyper-/hypo-methylated SCOs are also of functional significance across developmental stages, as they are highly enriched species-specific and stage-specific expressed genes both in Ad and ML stages. We further identify a set of parasitism-related functional genes that exhibit host-related differential methylation and expression among those SCOs, including p53-like transcription factor and Cdc37 that are of functional significance for elucidating differential parasitology between the two clades of Trichinella. This comparative epigenome study can help to decipher the environmental effects on differential adaptation and parasitism of the genus Trichinella.

20.
Microbiome ; 9(1): 138, 2021 06 12.
Article in English | MEDLINE | ID: mdl-34118964

ABSTRACT

BACKGROUND: Studies in developed countries have reported that the prevalence of asthma and rhinitis is higher in urban areas than in rural areas, and this phenomenon is associated with urbanization and changing indoor microbiome exposure. Developing countries such as China have experienced rapid urbanization in past years, but no study has investigated microbiome exposure and urban-rural health effects in these countries. METHODS: Nine high schools from urban and rural areas were randomly selected in Shanxi Province, China, and classroom vacuum dust was collected for shotgun metagenomic sequencing. A self-administered questionnaire was collected from 1332 students for personal information and health data. Three-level logistic regression was performed between microbial richness/abundance/functional pathways and the occurrence of asthma and rhinitis symptoms. RESULTS: Consistent with developed countries, the prevalence of wheeze and rhinitis was higher in urban areas than in rural areas (p < 0.05). Metagenomic profiling revealed 8302 bacterial, 395 archaeal, 744 fungal, 524 protist and 1103 viral species in classroom dust. Actinobacteria (mean relative abundance 49.7%), Gammaproteobacteria (18.4%) and Alphaproteobacteria (10.0%) were the most abundant bacterial classes. The overall microbiome composition was significantly different between urban and rural schools (p = 0.001, Adonis). Species from Betaproteobactera, Gammaproteobacteria and Bacilli were enriched in urban schools, and species from Actinobacteria and Cyanobacteria were enriched in rural schools. Potential pathogens were present in higher abundance in urban schools than in rural schools (p < 0.05). Pseudoalteromonas, Neospora caninum and Microbacterium foliorum were positively associated with the occurrence of wheeze, rhinitis and rhinoconjunctivitis, and Brachybacterium was protectively (negatively) associated with rhinitis (p < 0.01). The abundance of human endocrine and metabolic disease pathways was positively associated with rhinitis (p = 0.008), and butyrate and propionate metabolic genes and pathways were significantly enriched in rural schools (p < 0.005), in line with previous findings that these short-chain fatty acids protect against inflammatory diseases in the human gut. CONCLUSIONS: We conducted the first indoor microbiome survey in urban/rural environments with shotgun metagenomics, and the results revealed high-resolution microbial taxonomic and functional profiling and potential health effects. Video abstract.


Subject(s)
Asthma , Rhinitis , Asthma/epidemiology , Asthma/etiology , China/epidemiology , Humans , Rhinitis/epidemiology , Schools , Students
SELECTION OF CITATIONS
SEARCH DETAIL
...