Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 22(1): 301, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816771

ABSTRACT

Intervertebral disc degeneration (IVDD) is the primary factor contributing to low back pain (LBP). Unlike elderly patients, many young IVDD patients usually have a history of trauma or long-term abnormal stress, which may lead to local inflammatory reaction causing by immune cells, and ultimately accelerates degeneration. Research has shown the significance of M1-type macrophages in IVDD; nevertheless, the precise mechanism and the route by which it influences the function of nucleus pulposus cell (NPC) remain unknown. Utilizing a rat acupuncture IVDD model and an NPC degeneration model induced by lipopolysaccharide (LPS), we investigated the function of M1 macrophage-derived exosomes (M1-Exos) in IVDD both in vivo and in vitro in this study. We found that M1-Exos enhanced LPS-induced NPC senescence, increased the number of SA-ß-gal-positive cells, blocked the cell cycle, and promoted the activation of P21 and P53. M1-Exos derived from supernatant pretreated with the exosome inhibitor GW4869 reversed this result in vivo and in vitro. RNA-seq showed that Lipocalin2 (LCN2) was enriched in M1-Exos and targeted the NF-κB pathway. The quantity of SA-ß-gal-positive cells was significantly reduced with the inhibition of LCN2, and the expression of P21 and P53 in NPCs was decreased. The same results were obtained in the acupuncture-induced IVDD model. In addition, inhibition of LCN2 promotes the expression of type II collagen (Col-2) and inhibits the expression of matrix metalloproteinase 13 (MMP13), thereby restoring the equilibrium of metabolism inside the extracellular matrix (ECM) in vitro and in vivo. In addition, the NF-κB pathway is crucial for regulating M1-Exo-mediated NPC senescence. After the addition of M1-Exos to LPS-treated NPCs, p-p65 activity was significantly activated, while si-LCN2 treatment significantly inhibited p-p65 activity. Therefore, this paper demonstrates that M1 macrophage-derived exosomes have the ability to deliver LCN2, which activates the NF-κB signaling pathway, and exacerbates IVDD by accelerating NPC senescence. This may shed new light on the mechanism of IVDD and bring a fresh approach to IVDD therapy.


Subject(s)
Cellular Senescence , Exosomes , Intervertebral Disc Degeneration , Lipocalin-2 , Macrophages , NF-kappa B , Nucleus Pulposus , Rats, Sprague-Dawley , Signal Transduction , Animals , Exosomes/metabolism , Nucleus Pulposus/metabolism , Intervertebral Disc Degeneration/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Rats , NF-kappa B/metabolism , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects , Male , Lipopolysaccharides/pharmacology , Disease Models, Animal
2.
Int Immunopharmacol ; 131: 111904, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38518595

ABSTRACT

Intervertebral disc degeneration (IVDD) stands as the primary cause of low back pain (LBP). A significant contributor to IVDD is nucleus pulposus cell (NPC) senescence. However, the precise mechanisms underlying NPC senescence remain unclear. Monoacylglycerol lipase (MAGL) serves as the primary enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), breaking down monoglycerides into glycerol and fatty acids. It plays a crucial role in various pathological processes, including pain, inflammation, and oxidative stress. In this study, we utilized a lipopolysaccharide (LPS)-induced NPC senescence model and a rat acupuncture-induced IVDD model to investigate the role of MAGL in IVDD both in vitro and in vivo. Initially, our results showed that MAGL expression was increased 2.41-fold and 1.52-fold within NP tissues from IVDD patients and rats induced with acupuncture, respectively. This increase in MAGL expression was accompanied by elevated expression of p16INK4α. Following this, it was noted that the suppression of MAGL resulted in a notable decrease in the quantity of SA-ß-gal-positive cells and hindered the manifestation of p16INK4α and the inflammatory factor IL-1ß in NPCs. MAGL inhibition promotes type II collagen (Col-2) expression and inhibits matrix metalloproteinase 13 (MMP13), thereby restoring the balance of extracellular matrix (ECM) metabolism both in vitro and in vivo. A significant role for STING has also been demonstrated in the regulation of NPC senescence by MAGL. The expression of the STING protein was reduced by 57% upon the inhibition of MAGL. STING activation can replicate the effects of MAGL and substantially increase LPS-induced inflammation while accelerating the senescence of NPCs. These results strongly indicate that the inhibition of MAGL can significantly suppress nucleus pulposus senescence via its interaction with STING, consequently restoring the balance of ECM metabolism. This insight provides new perspectives for potential treatments for IVDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Animals , Humans , Rats , Inflammation/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Lipopolysaccharides/pharmacology , Monoacylglycerol Lipases/metabolism
3.
J Chem Ecol ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917413

ABSTRACT

In plant-herbivore interactions, plant volatile organic compounds (VOCs) play an important role in anti-herbivore defense. Grasses and Epichloë endophytes often form defensive mutualistic symbioses. Most Epichloë species produce alkaloids to protect hosts from herbivores, but there is no strong evidence that endophytes can affect the insect resistance of their hosts by altering VOC emissions. In this study, a native dominant grass, sheepgrass (Leymus chinensis), and its herbivore, oriental migratory locust (Locusta migratoria), were used as experimental materials. We studied the effect of endophyte-associated VOC emissions on the insect resistance of L. chinensis. The results showed that endophyte infection enhanced insect resistance of the host, and locusts preferred the odor of endophyte-free (EF) leaves to that of endophyte-infected (EI) leaves. We determined the VOC profile of L. chinensis using gas chromatography-mass spectrometry (GC-MS), and found that endophyte infection decreased the pentadecane (an alkane) emission from uneaten plants, and increased the nonanal (an aldehyde) emission from eaten plants. The olfactory response experiment showed that locusts were attracted by high concentration of pentadecane, while repelled by high concentration of nonanal, indicating that Epichloë endophytes may increase locust resistance of L. chinensis by decreasing pentadecane while increasing nonanal emission. Our results suggest that endophytes can induce VOC-mediated defense in hosts in addition to producing alkaloids, contributing to a better understanding the endophyte-plant-herbivore interactions.

4.
Front Plant Sci ; 14: 1191904, 2023.
Article in English | MEDLINE | ID: mdl-37396649

ABSTRACT

Introduction: Increases in plant species diversity may increase the community diversity effect and produce community over-yielding. Epichloë endophytes, as symbiotic microorganisms, are also capable of regulating plant communities, but their effects on community diversity effects are often overlooked. Methods: In this experiment, we investigated the effects of endophytes on the diversity effects of host plant community biomass by constructing artificial communities with 1-species monocultures and 2- and 4-species mixtures of endophyte-infected (E+) and endophyte-free (E-) Achnatherum sibiricum and three common plants in its native habitat, which were potted in live and sterilized soil. Results and discussion: The results showed that endophyte infection significantly increased the belowground biomass and abundance of Cleistogenes squarrosa, marginally significantly increased the abundance of Stipa grandis and significantly increased the community diversity (evenness) of the 4-species mixtures. Endophyte infection also significantly increased the over-yielding effects on belowground biomass of the 4-species mixtures in the live soil, and the increase in diversity effects on belowground biomass was mainly due to the endophyte significantly increasing the complementary effects on belowground biomass. The effects of soil microorganisms on the diversity effects on belowground biomass of the 4-species mixtures were mainly derived from their influences on the complementary effects. The effects of endophytes and soil microorganisms on the diversity effects on belowground biomass of the 4-species communities were independent, and both contributed similarly to the complementary effects on belowground biomass. The finding that endophyte infection promotes belowground over-yielding in live soil at higher levels of species diversity suggests that endophytes may be one of the factors contributing to the positive relationship between species diversity and productivity and explains the stable co-existence of endophyte-infected Achnatherum sibiricum with a variety of plants in the Inner Mongolian grasslands.

5.
Microb Ecol ; 85(2): 604-616, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35194659

ABSTRACT

Epichloë endophytes can not only affect the growth and resistance of the host plant but also change the biotic and abiotic properties of the soil where the host is situated. Here, we used endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis as plant materials, to study the microbial diversity and composition in the host root endosphere and rhizosphere soil under both pot and field conditions. The results showed that endophyte infection did not affect the diversity of either bacteria or fungi in the root zone. There were significant differences in both bacterial and fungal communities between the root endosphere and the rhizosphere, and between the field and the pot, while endophytes only affected root endosphere microbial communities. The bacterial families affected by endophyte infection changed from 29.07% under field conditions to 40% under pot conditions. In contrast, the fungal families affected by endophyte infection were maintained at nearly 50% under both field and pot conditions. That is to say, bacterial communities in the root endosphere were more strongly affected by environmental conditions, and in comparison, the fungal communities were more strongly affected by species specificity. Endophytes significantly affected the fungal community composition of the host root endosphere in both potted and field plants, only the effect was more obvious in potted plants. Endophyte infection increased the abundance of three fungal families (Thelebolaceae, Herpotrichiellaceae and Trimorphomycetaceae) under both field and potted conditions. In potted plants, endophytes also altered the dominant fungi from pathogenic Pleosporales to saprophytic Chaetomiaceae. Endophyte infection increased the relative abundance of arbuscular mycorrhizal fungi and saprophytic fungi, especially under potted conditions.Overall, endophytes significantly affected the fungal community composition of the host root endosphere in both potted and field plants. Endophytes had a greater impact on root endosphere microorganisms than the rhizosphere, a greater impact on fungal communities than bacteria, and a greater impact on root endosphere microorganisms under potted conditions than at field sites.


Subject(s)
Epichloe , Microbiota , Humans , Endophytes , Poaceae/microbiology , Bacteria , Rhizosphere , Plants/microbiology , Soil , Plant Roots/microbiology , Soil Microbiology
6.
J Fungi (Basel) ; 8(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35736102

ABSTRACT

Achnatherum sibiricum can be infected by two species of fungal endophytes, Epichloë gansuensis (Eg) and Epichloë sibirica (Es). In this study, the metabolites of Eg, Es, and their infected plants were studied by GC−MS analysis. The results showed that the metabolic profiles of Eg and Es were similar in general, and only six differential metabolites were detected. The direct effect of endophyte infection on the metabolites in A. sibiricum was that endophyte-infected plants could produce mannitol, which was not present in uninfected plants. Epichloë infection indirectly caused an increase in the soluble sugars in A. sibiricum related to growth and metabolites related to the defense against pathogens and herbivores, such as α-tocopherol, α-linolenic acid and aromatic amino acids. Epichloë infection could regulate galactose metabolism, starch and sucrose metabolism, tyrosine metabolism and phenylalanine metabolism of host grass. In addition, there was a significant positive correlation in the metabolite contents between the endophyte and the host.

7.
J Cell Sci ; 131(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-29930081

ABSTRACT

Aggresome formation is a major strategy to enable cells to cope with proteasomal stress. Misfolded proteins are assembled into micro-aggregates and transported to the microtubule organizing center (MTOC) to form perinuclear aggresomes before their degradation through autophagy. So far, multiple factors have been identified as the activators of micro-aggregate formation, but much less is known about the regulatory mechanisms of their transport. Here, we report that proteasomal stress leads to the activation of p38 MAPK family members. Two of them, p38γ (MAPK12) and p38δ (MAPK13), are dispensable for micro-aggregate formation but are required for their targeting to the MTOC. Interestingly, p38δ promotes micro-aggregate transport by phosphorylating SQSTM1, a major scaffold protein that assembles soluble ubiquitylated proteins into micro-aggregates. Expression of the phospho-mimetic mutant of SQSTM1 in p38δ-knockout cells completely rescued their aggresome formation defects and enhanced their resistance to proteasomal stress to wild-type levels. This study reveals p38δ-mediated SQSTM1 phosphorylation as a critical signal for the targeting of micro-aggregates to the MTOC and provides direct evidence for the survival advantages associated with aggresome formation in cells under proteasomal stress.


Subject(s)
Mitogen-Activated Protein Kinase 13/metabolism , Proteasome Endopeptidase Complex/metabolism , Sequestosome-1 Protein/metabolism , Humans , Microtubule-Organizing Center/enzymology , Microtubule-Organizing Center/metabolism , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 12/metabolism , Mitogen-Activated Protein Kinase 13/genetics , Phosphorylation , Proteasome Endopeptidase Complex/genetics , Protein Aggregates , Protein Transport , Sequestosome-1 Protein/genetics
8.
Autophagy ; 12(4): 632-47, 2016.
Article in English | MEDLINE | ID: mdl-27050454

ABSTRACT

During proteasomal stress, cells can alleviate the accumulation of polyubiquitinated proteins by targeting them to perinuclear aggresomes for autophagic degradation, but the mechanism underlying the activation of this compensatory pathway remains unclear. Here we report that PINK1-s, a short form of Parkinson disease (PD)-related protein kinase PINK1 (PTEN induced putative kinase 1), is a major regulator of aggresome formation. PINK1-s is extremely unstable due to its recognition by the N-end rule pathway, and tends to accumulate in the cytosol during proteasomal stress. Overexpression of PINK1-s induces aggresome formation in cells with normal proteasomal activities, while loss of PINK1-s function leads to a significant decrease in the efficiency of aggresome formation induced by proteasomal inhibition. PINK1-s exerts its effect through phosphorylation of the ubiquitin-binding protein SQSTM1 (sequestosome 1) and increasing its ability to sequester polyubiquitinated proteins into aggresomes. These findings pinpoint PINK1-s as a sensor of proteasomal activities that transduces the proteasomal impairment signal to the aggresome formation machinery.


Subject(s)
Autophagy , Cytosol/enzymology , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/metabolism , Stress, Physiological , Ubiquitinated Proteins/metabolism , Cell Death , Cytoprotection , HEK293 Cells , Humans , Lysine/metabolism , Phosphorylation , Phosphoserine/metabolism , Protein Aggregates , Protein Binding , Protein Isoforms/metabolism , Sequestosome-1 Protein/metabolism , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL