Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; 150: 109658, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801841

ABSTRACT

microRNAs are a class of non-coding RNAs with post-transcriptional regulatory functions in eukaryotes. In our previous study, miR-184-3p was identified in the hemocyte transcriptome of Pinctada fucata martensii (Pm-miR-184-3p), and its expression was shown to be up-regulated following transplantation surgery; however, its role in regulating transplantation immunity has not yet been clarified. Here, the role of Pm-miR-184-3p in regulating the immune response of P. f. martensii was studied. The expression of Pm-miR-184-3p increased following the stimulation of pathogen-associated molecular patterns, and Pm-miR-184-3p overexpression increased the activity of antioxidant-related enzymes, such as superoxide dismutase and catalase. Transcriptome analysis obtained 1096 differentially expressed genes (DEGs) after overexpression of Pm-miR-184-3p, and these DEGs were significantly enriched in conserved pathways such as the Cell cycle pathway and NF-kappa B signaling pathway, as well as GO terms including base excision repair, cell cycle, and DNA replication, suggesting that Pm-miR-184-3p could enhance the inflammation process. Target prediction and dual luciferase analysis revealed that pro-inflammatory related genes Pm-TLR3 and Pm-FN were the potential target of Pm-miR-184-3p. We speculate that Pm-miR-184-3p may utilize negative regulation of target genes to delay the activation of corresponding immune pathways, potentially preventing excessive inflammatory responses and achieving a delicate balance within the organism. Overall, Pm-miR-184-3p play a key role in regulating cellular responses to transplantation. Our findings provide new insights into the immune response of P. f. martensii to transplantation.


Subject(s)
Immunity, Innate , MicroRNAs , Pinctada , Animals , Pinctada/genetics , Pinctada/immunology , MicroRNAs/genetics , Immunity, Innate/genetics , Gene Expression Profiling , Gene Expression Regulation/immunology , Transcriptome
2.
Mar Environ Res ; 198: 106561, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788476

ABSTRACT

Ocean acidity extremes (OAX) events are becoming more frequent and intense in coastal areas in the context of climate change, generating widespread consequences on marine calcifying organisms and ecosystems they support. While transgenerational exposure to end-of-century scenario of ocean acidification (i.e., at pH 7.7) can confer calcifiers resilience, whether and to what extent such resilience holds true under OAX conditions is still poorly understood. Here, we found that transgenerational exposure of Ruditapes philippinarum to OAX resulted in cessation of embryonic development at the trochophore stage, implying devastating consequences of OAX on marine bivalves. We identified a large number of differentially expressed genes in embryos following transgenerationally exposed to OAX, which were mainly significantly enriched in KEGG pathways related to energy metabolism, immunity and apoptosis. These pathways were significantly activated, and genes involved in these processes were up-regulated, indicating strong cellular stress responses to OAX. These findings demonstrate that transgenerational exposure to OAX can result in embryonic developmental cessation by severe cellular damages, implying that transgenerational acclimation maybe not a panacea for marine bivalves to cope with OAX, and hence urgent efforts are required to understand consequences of intensifying OAX events in coastal ecosystems.


Subject(s)
Bivalvia , Climate Change , Embryonic Development , Seawater , Transcriptome , Animals , Seawater/chemistry , Transcriptome/drug effects , Bivalvia/genetics , Bivalvia/drug effects , Embryonic Development/drug effects , Hydrogen-Ion Concentration , Oceans and Seas
3.
Mar Environ Res ; 198: 106525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657370

ABSTRACT

Microplastics have become a widespread concern within marine environments and are particularly evident in aquaculture regions that are characterized by plastic accumulation. This study employed 16 S rDNA sequencing to investigate the dynamic succession of microbial communities colonizing polyvinyl chloride (PVC), polystyrene (PS), and polyamide (PA) microplastics in seawater, when subjected to varying exposure durations in the Liusha Bay aquaculture region. Results revealed that the composition of microplastics microbial communities varied remarkably across geographical locations and exposure times. With an increase in exposure duration, both the diversity and richness of bacterial communities colonizing microplastics significantly increased, microbial communities show adaptations to the plastisphere. The type of microplastics had a significant effect on the community structure characteristicsof bacteria attached to their surfaces, with inconsistent trends in the relative abundance of different genera on different substrates. Notably, microplastic surfaces harbored a significant abundance of hydrocarbon-degrading bacteria, exemplified by Erythrobacter. These findings underscore the potential of microplastics as unique microbial niches. Meanwhile, long-term exposure experiments also offer the possibility of screening for plastic-degrading bacteria. In addition, the presence of the pathogenic bacterium Vibrio was detected in all microplastic samples, implying that microplastics could serve as carriers for pathogenic dissemination. This underscores the urgency of addressing the risk posed by the proliferation of harmful bacteria on microplastic surfaces. Overall, this study enhances our understanding of microbial community dynamics on microplastics under diverse conditions. It contributes to the broader comprehension of plastisphere microbial ecosystems in the marine environment, thereby addressing critical environmental implications.


Subject(s)
Bacteria , Microplastics , Seawater , Water Pollutants, Chemical , China , Microplastics/toxicity , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Seawater/microbiology , Seawater/chemistry , Bays/microbiology , Environmental Monitoring , Microbiota/drug effects , Polymers , RNA, Ribosomal, 16S/genetics , Plastics/analysis
4.
Article in English | MEDLINE | ID: mdl-38522712

ABSTRACT

With the advancement of nanotechnology and the growing utilization of nanomaterials, titanium dioxide (TiO2) has been released into aquatic environments, posing potential ecotoxicological risks to aquatic organisms. In this study, the toxicological effects of TiO2 nanoparticles were investigated on the intestinal health of pearl oyster (Pinctada fucata martensii). The pearl oysters were subjected to a 14-day exposure to 5-mg/L TiO2 nanoparticle, followed by a 7-day recovery period. Subsequently, the intestinal tissues were analyzed using 16S rDNA high-throughput sequencing. The results from LEfSe analysis revealed that TiO2 nanoparticle increased the susceptibility of pearl oysters to potential pathogenic bacteria infections. Additionally, the TiO2 nanoparticles led to alterations in the abundance of microbial communities in the gut of pearl oysters. Notable changes included a decrease in the relative abundance of Phaeobacter and Nautella, and an increase in the Actinobacteria, which could potentially impact the immune function of pearl oysters. The abundance of Firmicutes and Bacteroidetes, as well as the expression of genes related to energy metabolism (AMPK, PK, SCS-1, SCS-2, SCS-3), were down-regulated, suggesting that TiO2 nanoparticles exposure may affect the digestive and energy metabolic functions of pearl oysters. Furthermore, the short-term recovery of seven days did not fully restore these levels to normal. These findings provide crucial insights and serve as an important reference for understanding the toxic effects of TiO2 nanoparticles on bivalves.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Nanoparticles , Pinctada , Titanium , Animals , Pinctada/genetics , Pinctada/metabolism , Nanoparticles/toxicity
5.
Mar Environ Res ; 195: 106345, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224626

ABSTRACT

To evaluate the physiological responses to titanium dioxide nanoparticles exposure in pearl oysters (Pinctada fucata martensii), pearl oysters were exposed for 14 days to different levels (0.05, 0.5, and 5 mg/L) of nano-TiO2 suspensions, while a control group did not undergo any nano-TiO2 treatment. And then recovery experiments were performed for 7 days without nano-TiO2 exposure. At days 1, 3, 7, 14, 17, and 21, hepatopancreatic tissue samples were collected and used to examine the activities of protease, amylase, lipase, catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), lysozyme (LYS), alkaline phosphatase (AKP), and acid phosphatase (ACP). The microstructure of the nacreous layer in shell was also analyzed by scanning electron microscopy. Results showed that pearl oysters exposed to 5 mg/L of TiO2 nanoparticles had significantly lower protease, amylase, and lipase activities and significantly higher CAT, SOD, GPx, LYS, ACP, and AKP activities than control pearl oysters did even after 7-day recovery (P-values <0.05). Pearl oysters exposed to 0.5 mg/L or 0.05 mg/L of TiO2 nanoparticles had lower protease, amylase, and lipase activities and higher CAT, SOD, GPx, LYS, ACP, and AKP activities than control pearl oysters did during the exposure period. After 7-day recovery, no significant differences in protease, lipase, SOD, GPx, CAT, ACP, AKP, or LYS activities were observed between pearl oysters exposed to 0.05 mg/L of TiO2 nanoparticles and control pearl oysters (P-values >0.05). In the period from day 7 to day 14, indistinct and irregular nacreous layer crystal structure in shell was observed. This study demonstrates that TiO2 nanoparticles exposure influences the levels of digestion, immune function, oxidative stress, and biomineralization in pearl oysters, which can be partially and weakly alleviated by short-term recovery. These findings contribute to understanding the mechanisms of action of TiO2 nanoparticles in bivalves. However, studies should evaluate whether a longer recovery period can restore to their normal levels in the future.


Subject(s)
Nanoparticles , Pinctada , Titanium , Animals , Pinctada/physiology , Superoxide Dismutase , Glutathione Peroxidase , Nanoparticles/toxicity , Peptide Hydrolases , Amylases , Lipase
6.
Article in English | MEDLINE | ID: mdl-37913699

ABSTRACT

Color polymorphisms in molluscan shells play an important economic in the aquaculture industry. Among bivalves, shell color diversity can reflect properties such as growth rate and tolerance. In pearl oysters, the nacre color of the donor is closely related to the pearl color. Numerous genes and proteins involved in nacre color formation have been identified within the exosomes of the mantle. In this study, we analyzed the carotenoids present in the mantle of gold- and silver-lipped pearl oysters, identifying capsanthin and xanthophyll as crucial pigments contributing to coloration. Transcriptome analysis of the mantle revealed several differentially expressed genes (DEGs) involved in color formation, including ferric-chelate reductase, mantle genes, and larval shell matrix proteins. We also isolated and identified exosomes from the mantles of both gold- and silver-lipped strains of the pearl oyster Pinctada fucata martensii, revealing the extracellular transition mechanism of coloration-related proteins. From these exosomes, we obtained a total of 1223 proteins, with 126 differentially expressed proteins (DEPs) identified. These proteins include those associated with carotenoid metabolism and Fe(III) metabolism, such as apolipoproteins, scavenger receptor proteins, ß,ß-carotene-15,15'-dioxygenase, ferritin, and ferritin heavy chains. This study may provide a new perspective on the nacre color formation process and the pathways involved in deposition within the pearl oyster P. f. martensii.


Subject(s)
Exosomes , Nacre , Pinctada , Animals , Transcriptome , Proteome/metabolism , Pinctada/genetics , Nacre/metabolism , Exosomes/genetics , Exosomes/metabolism , Ferric Compounds/metabolism , Silver/metabolism , Ferritins/genetics , Ferritins/metabolism
7.
Front Immunol ; 14: 1247544, 2023.
Article in English | MEDLINE | ID: mdl-37854612

ABSTRACT

Introduction: In the pearl culture industry, a major challenge is the overactive immunological response in pearl oysters resulting from allotransplantation, leading to shell-bead rejection and death. To better understand the molecular mechanisms of postoperative recovery and the regulatory role of DNA methylation in gene expression, we analyzed the changes in DNA methylation levels after allotransplantation in pearl oyster Pinctada fucata martensii, and elucidated the regulatory function of DNA methylation in promoter activity of nicotinic acetylcholine receptor (nAChR) gene. Methods: We constructed nine DNA methylomes at different time points after allotransplantation and used bisulfite genomic sequencing PCR technology (BSP) to verify the methylation status in the promoter of nAChR. We performed Dual luciferase assays to determine the effect of the dense methylation region in the promoter on transcriptional activity and used DNA pull-down and mass spectrometry analysis to assess the capability of transcription factor binding with the dense methylation region. Result: The DNA methylomes reveal that CG-type methylation is predominant, with a trend opposite to non-CG-type methylation. Promoters, particularly CpG island-rich regions, were less frequently methylated than gene function elements. We identified 5,679 to 7,945 differentially methylated genes (DMGs) in the gene body, and 2,146 to 3,385 DMGs in the promoter at each time point compared to the pre-grafting group. Gene ontology and pathway enrichment analyses showed that these DMGs were mainly associated with "cellular process", "Membrane", "Epstein-Barr virus infection", "Notch signaling pathway", "Fanconi anemia pathway", and "Nucleotide excision repair". Our study also found that the DNA methylation patterns of the promoter region of nAChR gene were consistent with the DNA methylomics data. We further demonstrated that the dense methylation region in the promoter of nAChR affects transcriptional activity, and that the methylation status in the promoter modulates the binding of different transcription factors, particularly transcriptional repressors. Conclusion: These findings enhance our understanding of the immune response and regulation mechanism induced by DNA methylation in pearl oysters after allotransplantation.


Subject(s)
Epstein-Barr Virus Infections , Pinctada , Animals , Transcriptome , Pinctada/genetics , DNA Methylation , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , CpG Islands , DNA/metabolism
8.
Fish Shellfish Immunol ; 140: 109002, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586600

ABSTRACT

Novel microRNA miR-63 (novel-miR-63) from pearl oyster Pinctada fucata martensii (Pm-novel-miR-63) is a species-specific miRNA. Our previous research has shown that the expression of Pm-novel-miR-63 was significantly downregulated at 24 h after nucleus transplantation. In this study, we analyzed the function and regulatory role of Pm-novel-miR-63 in the immune response of pearl oysters. The results showed that Pm-novel-miR-63 expression increased after the stimulation of pathogen associated molecular patterns at 6-12 h, and the activity of immune and antioxidant enzymes in the serum decreased after Pm-novel-miR-63 overexpression. Transcriptome analysis revealed that Pm-novel-miR-63 participated in regulating transplantation immunity through the Notch and mRNA surveillance signaling pathways. Target prediction and dual luciferase analysis revealed that Pm-GDP-FucTP, Pm-CysLTR2, and Pm-RLR were the target genes of Pm-novel-miR-63. These results suggested that Pm-novel-miR-63 participated in regulating the immune response in pearl oysters and can serve as a new interference target to reasonably control excessive immune rejection in pearl culture.


Subject(s)
MicroRNAs , Pinctada , Animals , MicroRNAs/metabolism , Gene Expression Profiling/veterinary , Antioxidants/metabolism , Immunity
9.
Mar Environ Res ; 191: 106133, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586225

ABSTRACT

The frequency at which organisms are exposed to hypoxic conditions in aquatic environments is increasing due to coastal eutrophication and global warming. To reveal the effects of long-term hypoxic stress on metabolic changes of pearl oyster, commonly known as Pinctada (Pinctada fucata martensii), the present study performed the integrated analysis of transcriptomics and metabolomics to investigate the global changes of genes and metabolites following 25 days hypoxia challenge. Transcriptome analysis detected 1108 differentially expressed genes (DEGs) between the control group and the hypoxia group. The gene ontology (GO) analysis of DEGs revealed that they are significantly enriched in functions such as "microtubule-based process", "histone (H3-K4, H3-K27, and H4-K20) trimethylation", "histone H4 acetylation", "kinesin complex", and "ATPase activity", and KEGG pathway functions, such as "DNA replication", "Apoptosis", and "MAPK signaling pathways". Metabolome analysis identified 68 significantly different metabolites from all identified metabolites, and associated with 25 metabolic pathways between the control and hypoxia groups. These pathways included aminoacyl-tRNA biosynthesis, arginine and proline metabolism, and phenylalanine metabolism. Our integrated analysis suggested that pearl oysters were subject to oxidative stress, apoptosis, immune inhibition, and neuronal excitability reduction under long-term hypoxic conditions. We also found a remarkable depression in a variety of biological functions under long-term hypoxia, including metabolic rates, biomineralization activities, and the repression of reorganization of the cytoskeleton and cell metabolism. These findings provide a basis for elucidating the mechanisms used by marine bivalves to cope with long-term hypoxic stress.

10.
Mar Environ Res ; 191: 106124, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586224

ABSTRACT

For marine animals living in estuarine, coastal, and intertidal areas, salinity changes and periodic hypoxia are typical stressors; however, how the varying salinity and dissolved oxygen affect the quality and nutrition of marine aquaculture species, such as oysters remains unknown. In this study, we evaluated the diel-cycling hypoxia under different salinities on fatty acid composition and lipid metabolism in oyster Crassostrea hongkongensis digestive glands. After 28 days of exposure, both hypoxia and elevated salinity caused a decrease in the saturated fatty acid (SFA)/polyunsaturated fatty acid (PUFA) ratio of C. hongkongensis, salinity mainly causes changes in C17:0, C17:1, C18:1n9, C20:1n9, C20:4n6, C21:5n3, C22:5n3, with high salinity being more damaging to the fatty acid fractions. Also, Hypoxia accelerates the synthesis of C18:1n9 and C20:4n6. Fatty acid synthase (FAS) synthesis is increased by reduced salinity or hypoxia, but Acetyl CoA carboxylase (ACC) only weakly promotes fatty acid synthesis. Under hypoxic conditions, the activity of both hepatic lipase (HL) and lipoprotein lipase activity (LPL) decreases, which is contrary to the results for dissolved oxygen. The increase in salinity under dissolved oxygen leads to a decrease in LPL activity and an increase in HL activity. Our findings highlighted that exposure to a combination of salinity and hypoxia stressors, can disrupt the protective mechanisms of the oyster and affect the function of its lipid metabolism. Therefore, long-term exposure to periodic hypoxia with salinity changes poses a risk to the nutritional quality of C. hongkongensis, affecting oyster aquaculture and the coastal ecosystem.

11.
Mar Biotechnol (NY) ; 25(4): 624-641, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37493868

ABSTRACT

The Hong Kong oyster, Crassostrea hongkongensis, is an estuarine bivalve with remarkable commercial value in South China, and the increase of salinity in estuaries during the dry season has posed a major threat to the oyster farming. To explore the global transcriptional response to salinity stress, a whole-transcriptome analysis was performed with the gills of oysters in 6‰, 18‰, and 30‰ filtered seawater. Overall, 2243, 194, 371, and 167 differentially expressed mRNAs (DEmRNAs), differentially expressed long non-coding RNAs (DElncRNAs), differentially expressed circular RNAs (DEcircRNAs), and differentially expressed microRNAs (DEmiRNAs) were identified, respectively. Based on GO enrichment and KEGG pathway analysis, these important DEmRNAs, DElncRNAs, DEcircRNAs, and DEmiRNAs were predicted to be mainly involved in amino acids metabolism, microtubule movement, and immune defense. This demonstrated the complexity of dynamic transcriptomic profiles of C. hongkongensis in response to salinity fluctuation. The regulatory relationships of DEmiRNAs-DEmRNAs, DElncRNAs-DEmiRNAs, and DEcircRNAs-DEmiRNAs were also predicted, and finally, a circRNA-associated competing endogenous RNA (ceRNA) network was constructed, consisting of six DEcircRNAs, eight DEmiRNAs, and five DEmRNAs. The key roles of taurine and hypotaurine metabolism and phenylalanine metabolism were highlighted in this ceRNA network, which was consistent with the major contribution of free amino acids to intracellular osmolality and cell volume regulation. Collectively, this study provides comprehensive data, contributing to the exploration of coding and non-coding RNAs in C. hongkongensis salinity response. The results would benefit the understanding of the response mechanism of bivalves against salinity fluctuation, and provide clues for genetic improvement of C. hongkongensis with hyper-salinity tolerance.


Subject(s)
Crassostrea , MicroRNAs , RNA, Long Noncoding , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Circular/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Crassostrea/genetics , Crassostrea/metabolism , Hong Kong , Gene Expression Profiling , Transcriptome , Salt Stress , Gene Regulatory Networks
12.
Environ Pollut ; 331(Pt 2): 121921, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37263564

ABSTRACT

Anthropologic activities caused frequent eutrophication in coastal and estuarine waters, resulting in diel-cycling hypoxia. Given global climate change, extreme weather events often occur, thus salinity fluctuation frequently breaks out in these waters. This study aimed to evaluate the combined effects of salinity and hypoxia on intestinal microbiota and digestive enzymes of Crassostrea hongkongensis. Specifically, we sequenced 16 S rRNA of intestinal microbiota and measured the digestive enzymes trypsin (TRS), lipase (LPS) and amylase (AMY) in oysters exposed for 28 days to three salinities (10, 25 and 35) and two dissolved oxygen conditions, normoxia (6 mg/L) and hypoxia (6 mg/L for 12 h, 2 mg/L for 12 h). Oysters in normoxia and salinity of 25 were treated as control. After 28-day exposure, for microbial components, Fusobacteriota, Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota comprised the majority for all experimental groups. Compared with the control group, the diversity and structure of intestinal microbiota tended to change in all treated groups. The species richness in C. hongkongensis intestine also changed. It was the most significant that high salinity increased Proteobacteria proportion while low salinity and hypoxia increased Fusobacteriota but decreased Proteobacteria, respectively. Additionally, Actinobacteriota was sensitive and changed under environmental stressor (P < 0.01). The prediction results on intestinal microbiota showed that, all functions of oysters were up-regulated to distinct degrees under low/high salinity with hypoxia. According to the KEGG prediction, cellular processes were more active and energy metabolism upregulated, indicating the adaptation of C. hongkongensis to environmental change. Periodical hypoxia and low/high salinity had complex effect on the digestive enzymes, in which the activity of TRS and LPS decreased while AMY increased. High/low salinity and periodical hypoxia can change the secretion of digestive enzymes and influence intestinal microbial diversity and species richness of C. hongkongensis, deducing the chronic adverse effects on the digestive physiology in long-term exposure.


Subject(s)
Crassostrea , Gastrointestinal Microbiome , Animals , Crassostrea/metabolism , Salinity , Lipopolysaccharides , Hypoxia
13.
Mar Environ Res ; 189: 106063, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37385086

ABSTRACT

A large number of aquaculture facilities produced during the farming process are made of plastics. These plastics can be a distinct habitat for bacteria due to their unique materials. Therefore, this paper focuses on plastic aquaculture facilities and investigates the impact of bacterial accumulation on plastic surfaces. In this study, the high-throughput sequencing of 16S rRNA was conducted to investigate bacterial community profiling associated with the pearl culture facilities (cultured net cages and foam buoys) and surrounding water of Liusha Bay. Alpha diversity analysis showed that the richness and diversity indexes of bacterial communities in pearl culture facilities were higher than those in the aquatic environment. The richness and diversity indexes of bacterial communities were different between cultured net cages and foam buoys. Spatially influenced bacterial communities attached to pearl culture facilities varied between aquaculture areas. Thus, plastic has become a habitat for bacteria, floating in the marine environment and providing a favorable living environment for marine microorganisms and specific preferences for different substrate types. The relative abundance of certain functions on the attached bacterial community of the culture facility was high, which suggested that plastics did not only alter community structure but also influenced bacterial function. In addition, we detected small amounts of pathogenic bacteria, such as Vibrio and Bruegeria, in pearl culture facilities and surrounding seawater, suggesting that plastics can act as vectors for potentially pathogenic bacteria that may have an impact on the development of aquaculture. Our understanding of plastic ecology has been enriched by the discovery of the various microbial assemblages that can occur in aquaculture facilities.


Subject(s)
Bays , Plastics , Bays/chemistry , RNA, Ribosomal, 16S , Seawater/chemistry , Aquaculture , Bacteria , China
14.
Sci Data ; 10(1): 317, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231051

ABSTRACT

Sipuncula is a class of exocoelomic unsegmented animals whose evolutionary relationships are unresolved. The peanut worm Sipunculus nudus is a globally distributed, economically important species belonging to the class Sipuncula. Herein, we present the first high-quality chromosome-level assembly of S. nudus based on HiFi reads and high-resolution chromosome conformation capture (Hi-C) data. The assembled genome was 1,427 Mb, with a contig N50 length of 29.46 Mb and scaffold N50 length of 80.87 Mb. Approximately 97.91% of the genome sequence was anchored to 17 chromosomes. A BUSCO assessment showed that 97.7% of the expectedly conserved genes were present in the genome assembly. The genome was composed of 47.91% repetitive sequences, and 28,749 protein-coding genes were predicted. A phylogenetic tree demonstrated that Sipuncula belongs to Annelida and diverged from the common ancestor of Polychaeta. The high-quality chromosome-level genome of S. nudus will serve as a valuable reference for studies of the genetic diversity and evolution of Lophotrochozoa.


Subject(s)
Genome, Helminth , Nematoda , Animals , Chromosomes/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid
15.
Fish Shellfish Immunol ; 137: 108752, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080325

ABSTRACT

Effective immune regulation after transplantation during pearl production is crucial for the cultivation of high-quality pearls. MicroRNAs (miRNAs) play an important role in a variety of physiological processes. To understand the regulatory rules of miRNAs after transplantation in Pinctada funcata martensii, we constructed 13 miRNA transcriptomes, including the control group (Con), allograft (Al), and xenograft (Xe) transplantation at six time points (6, 12, and 24 h and 3, 6, and 12 days), in which the xenografted mantle tissue was from Pinctada maxima. We identified 159 differentially expressed miRNAs (DEMs) and found that these DEMs showed high expression at 12 h, 24 h, and 3 days after transplantation. A total of 130 DEMs, such as Let-7, were present in the Al and Xe groups; miR-34 and 16 other DEMs were specifically present in the Al group; miR-216b and 13 other DEMs were specifically present in the Xe group. Compared with the Con group, the target genes of DEMs in the Al group were significantly enriched in protein complex, cytoskeleton, and macromolecular complex, and the Xe group was significantly enriched in ribonucleoside metabolic process, nucleoside binding, and cell division. Compared with the Al group, the target genes in the Xe group were significantly enriched in response to DNA damage stimulation. Overall, multiple pathways associated with cellular activity were enriched in higher numbers of genes in the Xe group than in the Al group. These findings enriched the information on immune regulatory mechanisms at the expression level of miRNAs in P. f. martensii after transplantation.


Subject(s)
MicroRNAs , Pinctada , Animals , Transcriptome , Transplantation, Heterologous , Allografts , MicroRNAs/genetics , MicroRNAs/metabolism
16.
Mar Environ Res ; 187: 105948, 2023 May.
Article in English | MEDLINE | ID: mdl-36931046

ABSTRACT

The South American mussel, Mytella strigata, is a highly invasive fouling species of great concern along intertidal shores in East and Southeast Asia, posing serious threats to native biodiversity and ecosystems. Intertidal areas, being increasingly attacked by heatwaves over the last decade, are among the most thermally challenging habitats, yet the fate of this highly invasive mussel under scenarios of hotter heatwaves remains unknown. Here, we investigated how M. strigata responded to intensifying heatwaves frequently occurring in the South China Sea. Over 97% of individuals survived the five-day-lasting heatwaves, suggesting their high ability to cope with short-term heatwaves. Virtually unaffected clearance rate and absorption efficiency throughout the course of heatwaves indicate the maintenance of energy acquisition, and significantly decreased respiration rate implies the depression of energy metabolism, generating significant decreases in the O:N ratio when heatwaves occurred. Scope for growth of heatwaves-stressed mussels significantly decreased during initial exposure and then increased over time. These findings indicate the remarkable ability of M. strigata to cope with heatwaves recorded in its invasive habitats and call the attention for the rapid spread of this highly invasive fouling species in the context of climate change.


Subject(s)
Ecosystem , Introduced Species , Mytilidae , Animals , Humans , Climate Change , Energy Metabolism , Hot Temperature , Adaptation, Physiological
17.
Fish Shellfish Immunol ; 133: 108529, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36632915

ABSTRACT

Histone acetylation is a dynamic epigenetic modification and sensitive to the changes in extracellular environment. Butyrate, a histone deacetylase inhibitor, can inhibit the deacetylation process of histones. In this study, we found that the acetylation level of H3 was enhanced at 12 h after lipopolysaccharide (LPS) stimulation and increased at 6 h after combining treatment with LPS and butyrate in pearl oyster Pinctada fucata martensii. Transcriptome analysis indicated that butyrate counter-regulated 29.95%-36.35% of the genes repressed by LPS, and these genes were mainly enriched in the "cell proliferation" and "Notch signaling pathway". Meanwhile, butyrate inhibited the up-regulation of 31.54%-54.96% of the genes induced by LPS, and these genes were mainly enriched in "Notch signaling pathway", "cell proliferation", "NF-kappa B signaling pathway", "TNF signaling pathway", "apoptosis", "NOD-like receptor signaling pathway", "RIG-I-like receptor signaling pathway" and "cytosolic DNA-sensing pathway". Gene expression analysis showed that butyrate downregulated most of cell proliferation, immune-related genes effected by LPS. The activities of LAP, LYS, ACP, ALP, and GSH-Px were up-regulated at 6 h after combining treatment with LPS and butyrate, suggesting that butyrate could activate serum immune-related enzymes in pearl oyster. These results can improve our understanding of the function of histone deacetylase in the immune response of pearl oyster and provide references for an in-depth study of the functions of histone deacetylase in mollusks.


Subject(s)
Pinctada , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/metabolism , Butyrates/pharmacology , Butyrates/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Immunity, Innate/genetics , Immunity, Cellular
18.
Mar Environ Res ; 184: 105871, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36587491

ABSTRACT

Marine heatwaves (MHWs) are projected to increase in their frequency, intensity, and duration, causing irreversible and catastrophic consequences for intertidal ecosystems around the world. The highly invasive fouling mussel, Arcuatula senhousia, can cause marked habitat alteration by constructing extremely intense byssal mats, devastating the biodiversity of many intertidal systems, yet very little is known about its fate under conditions of more frequent, hotter and longer MHWs. Here, we assessed impacts of two scenarios of MHWs (low-intensity with 4 °C rise of seawater temperature and high-intensity with 8 °C rise, respectively) on the byssal production of A. senhousia. Mussels exposed to low-intensity MHWs did not show any significant differences in the number, length and diameter of byssal threads, compared with those not thermally stressed. Under high-intensity scenario, the byssus production was significantly depressed, and byssal threads became fewer, shorter and finer, in line with significant decreases in cumulative length and volume. These findings provide a better understanding of responses of invasive fouling mussels such as A. senhousia to MHWs and make a leap forward in linking climate change and biological fouling in marine ecosystems.


Subject(s)
Ecosystem , Mytilidae , Animals , Seawater , Mytilidae/physiology , Hot Temperature , Climate Change
19.
Mar Pollut Bull ; 187: 114534, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36587532

ABSTRACT

Analyses of the transcriptome and metabolome were conducted to clarify alterations of key genes and metabolites in pearl oysters following exposure to short-term hypoxic treatment. We totally detected 209 DEGs between the control and hypoxia groups. Enrichment analysis indicated the enrichment of GO terms including "oxidation-reduction process", "ECM organization", "chaperone cofactor-dependent protein refolding", and "ECM-receptor interaction" KEGG pathway by the DEGs. In addition, between the two groups, a total of 28 SDMs were identified, which were implicated in 13 metabolic pathways, such as "phenylalanine metabolism", "D-amino acid metabolism", and "aminoacyl-tRNA biosynthesis". Results suggest that pearl oysters are exposed to oxidative stress and apoptosis under short-term hypoxia. Also, pearl oysters might adapt to short-term hypoxic treatment by increasing antioxidant activity, modulating immune and biomineralization activities, maintaining protein homeostasis, and reorganizing the cytoskeleton. The results of our study help unveil the mechanisms by which pearl oysters respond adaptively to short-term hypoxia.


Subject(s)
Pinctada , Transcriptome , Animals , Pinctada/genetics , Gene Expression Profiling , Metabolomics , Metabolome
20.
Mar Pollut Bull ; 186: 114395, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455501

ABSTRACT

Marine heatwaves (MHWs) have increased in intensity and frequency in global oceans, causing deleterious effects on many marine organisms and ecosystems they support. Bivalves are among the most vulnerable taxonomic groups to intensifying MHWs, yet little is known about the underlying mechanisms. Here, we investigated the impact of MHWs on the digestive metabolism of pearl oysters (Pinctada maxima). Two moderate and severe scenarios of MHWs were performed by increasing seawater temperature respectively from 24 °C to 28 °C and 32 °C for 3 days. When subjected to MHWs and with increasing intensity, pearl oysters significantly enhanced their digestive enzymatic activities, such as lipase and amylase. LC-MS-based metabolomics revealed negative responses in the lipid metabolism (e.g., steroid biosynthesis, glycerophospholipid metabolism, and sphingolipid metabolism), the amino acid metabolism (e.g., glutamate, histidine, arginine, and proline), and the B-vitamins metabolism. These findings indicate that the digestive metabolism of marine bivalves can likely succumb to intensifying MHWs events.


Subject(s)
Pinctada , Animals , Pinctada/metabolism , Ecosystem , Oceans and Seas , Seawater , Aquatic Organisms
SELECTION OF CITATIONS
SEARCH DETAIL
...