Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1429782, 2024.
Article in English | MEDLINE | ID: mdl-39239564

ABSTRACT

Cdon and boc are members of the cell adhesion molecule subfamily III Ig/fibronectin. Although they have been reported to be involved in muscle and neural development at late developmental stage, their early roles in embryonic development remain unknown. Here, we discovered that in zebrafish, cdon, but not boc, is expressed in dorsal forerunner cells (DFCs) and the epithelium of Kupffer's vesicle (KV), suggesting a potential role for cdon in organ left-right (LR) patterning. Further data showed that liver and heart LR patterning were disrupted in cdon morphants and cdon mutants. Mechanistically, we found that loss of cdon function led to defect in DFCs clustering, reduced KV lumen, and defective cilia, resulting in randomized Nodal/spaw signaling and subsequent organ LR patterning defects. Additionally, predominant distribution of a cdon morpholino (MO) in DFCs caused defects in DFC clustering, KV morphogenesis, cilia number/length, Nodal/spaw signaling, and organ LR asymmetry, similar to those observed in cdon morphants and cdon -/- embryos, indicating a cell-autonomous role for cdon in regulating KV formation during LR patterning. In conclusion, our data demonstrate that during gastrulation and early somitogenesis, cdon is essential for proper DFC clustering, KV formation, and normal cilia, thereby playing a critical role in establishing organ LR asymmetry.

2.
Biochem Biophys Rep ; 39: 101782, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39108621

ABSTRACT

Cxcr4a is involved in multiple organ development including coronary vasculature formation and heart left-right (LR) patterning, whether it is involved in heart progenitor determination and cardiac rhythm regulation is not addressed. Here we showed that in cxcr4a mutants, from 2 days post fertilization (dpf) to 4dpf the embryos transiently displayed pericardial edema and increased cardiac rhythm. While from 5dpf, the heart phenotype disappeared. Detailed analysis demonstrated that, at 36hpf and 48hpf, even though there was no distinct difference in the heart size between cxcr4a mutants and controls, the expression of myl7 was decreased. Further data showed that, the heart progenitors were decreased at 18SS(Somite Stage). Mechanically, RNA-seq, RT-qPCR and in situ experiments showed that the retinoic acid (RA) signaling was upregulated, and the up-regulation of RA signaling may mediate the role of cxcr4a in regulating heart progenitor development. In addition, we also identified that low dose of RA treatment accelerated the cardiac rhythm, being similar to that in cxcr4a mutants. Decreasing RA signaling partially restored the rapid cardiac rhythm in cxcr4a mutants, implying the possibility that RA signaling partially mediates the role of cxcr4a in regulating cardiac rhythm. In conclusion, our study identified cxcr4a simultaneously regulates heart progenitor determination and cardiac rhythm.

3.
Elife ; 62017 08 02.
Article in English | MEDLINE | ID: mdl-28767039

ABSTRACT

Tumor suppressor p53 prevents cell transformation by inducing apoptosis and other responses. Homozygous TP53 deletion occurs in various types of human cancers for which no therapeutic strategies have yet been reported. TCGA database analysis shows that the TP53 homozygous deletion locus mostly exhibits co-deletion of the neighboring gene FXR2, which belongs to the Fragile X gene family. Here, we demonstrate that inhibition of the remaining family member FXR1 selectively blocks cell proliferation in human cancer cells containing homozygous deletion of both TP53 and FXR2 in a collateral lethality manner. Mechanistically, in addition to its RNA-binding function, FXR1 recruits transcription factor STAT1 or STAT3 to gene promoters at the chromatin interface and regulates transcription thus, at least partially, mediating cell proliferation. Our study anticipates that inhibition of FXR1 is a potential therapeutic approach to targeting human cancers harboring TP53 homozygous deletion.


Subject(s)
Gene Expression Regulation, Neoplastic , Homozygote , Neoplasms/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sequence Deletion , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis/genetics , Base Sequence , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Chromatin , Female , Gene Editing , Gene Expression Profiling , Gene Knockdown Techniques , Heterografts , Humans , Janus Kinase Inhibitors/analysis , Mice , Mice, Inbred BALB C , Promoter Regions, Genetic , STAT1 Transcription Factor/genetics , STAT3 Transcription Factor/genetics , Transcription Factors
4.
Oncotarget ; 7(32): 51044-51058, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27409837

ABSTRACT

The HIPPO pathway is an evolutionary conserved regulator of organ size that controls both cell proliferation and death. This pathway has an important role in mediating cell death in response to oxidative stress through the inactivation of Yes-associated protein (YAP) and inhibition of anti-oxidant gene expression. Cells exposed to oxidative stress induce the phosphorylation of the alpha (α) subunit of the translation initiation factor eIF2 at serine 51 (eIF2αP), a modification that leads to the general inhibition of mRNA translation initiation. Under these conditions, increased eIF2αP facilitates the mRNA translation of activating transcription factor 4 (ATF4), which mediates either cell survival and adaptation or cell death under conditions of severe stress. Herein, we demonstrate a functional connection between the HIPPO and eIF2αP-ATF4 pathways under oxidative stress. We demonstrate that ATF4 promotes the stabilization of the large tumor suppressor 1 (LATS1), which inactivates YAP by phosphorylation. ATF4 inhibits the expression of NEDD4.2 and WWP1 mRNAs under pro-oxidant conditions, which encode ubiquitin ligases mediating the proteasomal degradation of LATS1. Increased LATS1 stability is required for the induction of cell death under oxidative stress. Our data reveal a previously unidentified ATF4-dependent pathway in the induction of cell death under oxidative stress via the activation of LATS1 and HIPPO pathway.


Subject(s)
Activating Transcription Factor 4/metabolism , Cell Death/physiology , Eukaryotic Initiation Factor-2/metabolism , Oxidative Stress/physiology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Animals , Cell Line, Tumor , Gene Expression Regulation/physiology , Hippo Signaling Pathway , Humans , Mice , Mice, Knockout , Phosphorylation , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL