Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Genomics ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38849110

ABSTRACT

Plant height and heading date are important agronomic traits in wheat (Triticum aestivum L.) that affect final grain yield. In wheat, knowledge of pseudo-response regulator (PRR) genes on agronomic traits is limited. Here, we identify a wheat TaPRR95 gene by genome-wide association study (GWAS) to be associated with plant height. Triple allele mutant plants produced by CRISPR/Cas9 show increased plant height, particularly at the peduncle, with an earlier heading date. The longer peduncle is mainly caused by the increased cell elongation at its upper section, whilst the early heading date is accompanied with elevated expression of flowering genes, such as TaFT and TaCO1. A peduncle-specific transcriptome analysis reveals up-regulated photosynthesis genes and down-regulated IAA/Aux genes for auxin signaling in prr95aabbdd plants that may act as a regulatory mechanism to promote robust plant growth. A haplotype analysis identifies a TaPRR95-B haplotype (Hap2) to be closely associated with reduced plant height and increased thousand-grain weight. Moreover, the Hap2 frequency is higher in cultivars than that in landraces, suggesting the artificial selection on the allele during wheat breeding. These findings suggest that TaPRR95 is a new regulator for plant height and heading date, thereby providing an important target for wheat yield improvement.

2.
Plants (Basel) ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732475

ABSTRACT

JASMONATE-ZIM DOMAIN (JAZ) repressor proteins work as co-receptors in the jasmonic acid (JA) signalling pathway and are essential for plant development and environmental adaptation. Despite wheat being one of the main staple food crops, until recently, comprehensive analysis of its JAZ gene family has been limited due to the lack of complete and high-quality reference genomes. Here, using the latest reference genome, we identified 17 JAZ genes in the wheat D-genome donor Aegilops tauschii. Then, 54 TaJAZs were identified in common wheat. A systematic examination of the gene structures, conserved protein domains, and phylogenetic relationships of this gene family was performed. Five new JAZ genes were identified as being derived from tandem duplication after wheat divergence from other species. We integrated RNA-seq data and yield QTL information and found that tandemly duplicated TaJAZ genes were prone to association with spike-related traits. Moreover, 12 TaJAZ genes were located within breeding selection sweeps, including 9 tandemly duplicated ones. Haplotype variation analysis of selected JAZ genes showed significant association of TaJAZ7A and TaJAZ13A with thousand-grain weight. Our work provides a clearer picture of wheat JAZ gene evolution and puts forward the possibility of using these genes for wheat yield improvement.

3.
Plant Biotechnol J ; 21(10): 1990-2001, 2023 10.
Article in English | MEDLINE | ID: mdl-37589238

ABSTRACT

Plant breeding is constrained by trade-offs among different agronomic traits by the pleiotropic nature of many genes. Genes that contribute to two or more favourable traits with no penalty on yield are rarely reported, especially in wheat. Here, we describe the editing of a wheat auxin response factor TaARF12 by using CRISPR/Cas9 that rendered shorter plant height with larger spikes. Changes in plant architecture enhanced grain number per spike up to 14.7% with significantly higher thousand-grain weight and up to 11.1% of yield increase under field trials. Weighted Gene Co-Expression Network Analysis (WGCNA) of spatial-temporal transcriptome profiles revealed two hub genes: RhtL1, a DELLA domain-free Rht-1 paralog, which was up-regulated in peduncle, and TaNGR5, an organ size regulator that was up-regulated in rachis, in taarf12 plants. The up-regulation of RhtL1 in peduncle suggested the repression of GA signalling, whereas up-regulation of TaNGR5 in spike may promote GA response, a working model supported by differential expression patterns of GA biogenesis genes in the two tissues. Thus, TaARF12 complemented plant height reduction with larger spikes that gave higher grain yield. Manipulation of TaARF12 may represent a new strategy in trait pyramiding for yield improvement in wheat.


Subject(s)
Gene Editing , Triticum , Triticum/genetics , Gibberellins , Plant Breeding , Agriculture , Edible Grain/genetics
4.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628397

ABSTRACT

Diversity surveys of germplasm are important for gaining insight into the genomic basis for crop improvement; especially InDels, which are poorly understood in hexaploid common wheat. Here, we describe a map of 89,923 InDels from exome sequencing of 262 accessions of a Chinese wheat mini-core collection. Population structure analysis, principal component analysis and selective sweep analysis between landraces and cultivars were performed. Further genome-wide association study (GWAS) identified five QTL (Quantitative Trait Loci) that were associated with spike length, two of them, on chromosomes 2B and 6A, were detected in 10 phenotypic data sets. Assisted with RNA-seq data, we identified 14 and 21 genes, respectively that expressed in spike and rachis within the two QTL regions that can be further investigated for candidate genes discovery. Moreover, InDels were found to be associated with awn length on chromosomes 5A, 6B and 4A, which overlapped with previously reported genetic loci B1 (Tipped 1), B2 (Tipped 2) and Hd (Hooded). One of the genes TaAGL6 that was previously shown to affect floral organ development was found at the B2 locus to affect awn length development. Our study shows that trait-associated InDels may contribute to wheat improvement and may be valuable molecular markers for future wheat breeding.


Subject(s)
Genome-Wide Association Study , Triticum , China , Plant Breeding , Quantitative Trait Loci , Triticum/genetics
5.
Front Plant Sci ; 13: 850302, 2022.
Article in English | MEDLINE | ID: mdl-35498697

ABSTRACT

Optimal spike architecture provides a favorable structure for grain development and yield improvement. However, the number of genes cloned to underlie wheat spike architecture is extremely limited. Here, we obtained a wheat dense spike mutant (wds) induced by 60Co treatment of a common wheat landrace Huangfangzhu that exhibited significantly reduced spike and grain lengths. The shortened spike length was caused by longitudinal reduction in number and length of rachis cells. We adopted a multi-omics approach to identify the genomic locus underlying the wds mutant. We performed Exome Capture Sequencing (ECS) and identified two large deletion segments, named 6BL.1 at 334.8∼424.3 Mb and 6BL.2, 579.4∼717.8 Mb in the wds mutant. RNA-seq analysis confirmed that genes located in these regions lost their RNA expression. We then found that the 6BL.2 locus was overlapping with a known spike length QTL, qSL6B.2. Totally, 499 genes were located within the deleted region and two of them were found to be positively correlated with long spike accessions but not the ones with short spike. One of them, TraesCS6B01G334600, a well-matched homolog of the rice OsBUL1 gene that works in the Brassinosteroids (BR) pathway, was identified to be involved in cell size and number regulation. Further transcriptome analysis of young spikes showed that hormone-related genes were enriched among differentially expressed genes, supporting TraesCS6B01G334600 as a candidate gene. Our work provides a strategy to rapid locate genetic loci with large genomic lesions in wheat and useful resources for future wheat study.

6.
New Phytol ; 233(6): 2405-2414, 2022 03.
Article in English | MEDLINE | ID: mdl-35015909

ABSTRACT

Reactive oxygen species (ROS) play important roles during anther and pollen development. DNA damage may cause chromosome fragmentation that is considered to underlie chromosome elimination for haploid induction by matrilineal pollen, a key step in MATRILINEAL-based double haploid breeding technology. But when and how DNA damage occurs is unknown. We performed comparative studies of wheat pollens from the wild-type and the CRISPR/Cas9 edited matrilineal mutant (mMTL). Chemical assays detected a second wave of ROS in mMTL pollen at the three-nuclei-stage and subsequently, along with reduced antioxidant enzyme activities. RNA-seq analysis revealed disturbed expression of genes for fatty acid biosynthesis and ROS homoeostasis. Gas chromatography-mass spectrometry measurement identified abnormal fatty acid metabolism that may contribute to defective mMTL pollen walls as observed using electron microscopy, consistent with the function of MTL as a phospholipase. Moreover, DNA damage was identified using TdT-mediated dUTP nick-end labelling and quantified using comet assays. Velocity patterns showed that ROS increments preceded that of DNA damage over the course of pollen maturation. Our work hypothesises that mMTL-triggered later-stage-specific ROS causes DNA damage that may contribute to chromosome fragmentation and hence chromosome elimination during haploid induction. These findings may provide more ways to accelerate double haploid-based plant breeding.


Subject(s)
Plant Breeding , Triticum , Gene Expression Regulation, Plant , Haploidy , Pollen/metabolism , Reactive Oxygen Species/metabolism , Triticum/metabolism
7.
Mol Plant ; 15(3): 504-519, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35026438

ABSTRACT

Diversity surveys of crop germplasm are important for gaining insights into the genomic basis for plant architecture and grain yield improvement, which is still poorly understood in wheat. In this study, we exome sequenced 287 wheat accessions that were collected in the past 100 years. Population genetics analysis identified that 6.7% of the wheat genome falls within the selective sweeps between landraces and cultivars, which harbors the genes known for yield improvement. These regions were asymmetrically distributed on the A and B subgenomes with regulatory genes being favorably selected. Genome-wide association study (GWAS) identified genomic loci associated with traits for yield potential, and two underlying genes, TaARF12 encoding an auxin response factor and TaDEP1 encoding the G-protein γ-subunit, were located and characterized to pleiotropically regulate both plant height and grain weight. Elite single-nucleotide haplotypes with increased allele frequency in cultivars relative to the landraces were identified and found to have accumulated over the course of breeding. Interestingly, we found that TaARF12 and TaDEP1 function in epistasis with the classical plant height Rht-1 locus, leading to propose a "Green Revolution"-based working model for historical wheat breeding. Collectively, our study identifies selection signatures that fine-tune the gibberellin pathway during modern wheat breeding and provides a wealth of genomic diversity resources for the wheat research community.


Subject(s)
Plant Breeding , Triticum , Breeding , Edible Grain/genetics , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...