Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39183639

ABSTRACT

BACKGROUND: The increasing prevalence of obesity-related glomerulopathy (ORG) poses a significant threat to public health. Sodium-glucose co-transporter-2 (SGLT2) inhibitors effectively reduce body weight and total fat mass in obese individuals and halt the progression of ORG. However, the underlying mechanisms of their reno-protective effects in ORG remain unclear. METHODS: We established a high-fat diet-induced ORG model using C57BL/6J mice, which were divided into three groups: normal chow diet (NCD group), high-fat diet (HFD) mice treated with placebo (ORG group), and HFD mice treated with Empagliflozin (EMPA group). We conducted 16S ribosomal RNA gene sequencing of feces and analyzed metabolites from kidney, feces, liver, and serum samples. RESULTS: ORG mice showed increased urinary albumin creatinine ratio, cholesterol, triglyceride levels, and glomerular diameter compared to NCD mice (all P < 0.05). EMPA treatment significantly alleviated these parameters (all P < 0.05). Multi-tissue metabolomics analysis revealed lipid metabolic reprogramming in ORG mice, which was significantly altered by EMPA treatment. MetOrigin analysis showed a close association between EMPA-related lipid metabolic pathways and gut microbiota alterations, characterized by reduced abundances of Firmicutes and Desulfovibrio and increased abundance of Akkermansia (all P < 0.05). CONCLUSION: The metabolic homeostasis of ORG mice, especially in lipid metabolism, was disrupted and closely associated with gut microbiota alterations, contributing to the progression of ORG. EMPA treatment improved kidney function and morphology by regulating lipid metabolism through the gut-kidney axis, highlighting a novel therapeutic approach for ORG.

2.
Elife ; 92020 04 21.
Article in English | MEDLINE | ID: mdl-32314955

ABSTRACT

The World Health Organization has included three bunyaviruses posing an increasing threat to human health on the Blueprint list of viruses likely to cause major epidemics and for which no, or insufficient countermeasures exist. Here, we describe a broadly applicable strategy, based on llama-derived single-domain antibodies (VHHs), for the development of bunyavirus biotherapeutics. The method was validated using the zoonotic Rift Valley fever virus (RVFV) and Schmallenberg virus (SBV), an emerging pathogen of ruminants, as model pathogens. VHH building blocks were assembled into highly potent neutralizing complexes using bacterial superglue technology. The multimeric complexes were shown to reduce and prevent virus-induced morbidity and mortality in mice upon prophylactic administration. Bispecific molecules engineered to present two different VHHs fused to an Fc domain were further shown to be effective upon therapeutic administration. The presented VHH-based technology holds great promise for the development of bunyavirus antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , Bunyaviridae Infections , Single-Domain Antibodies/pharmacology , Animals , Antibodies, Neutralizing/pharmacology , Camelids, New World , Female , Humans , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL