Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(2): 113792, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38363679

ABSTRACT

Pattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells. Importantly, HIF activation leads to control of HSV replication. Mechanistically, HIF activation induces autophagy, which is essential for antiviral activity. HSV-2 infection in vivo leads to hypoxia in CNS neurons, and mice with neuron-specific HIF1/2α deficiency exhibit elevated viral load and augmented PRR signaling and inflammatory gene expression in the CNS after HSV-2 infection. Data from human stem cell-derived neuron and microglia cultures show that HIF also exerts antiviral and inflammation-restricting activity in human CNS cells. Collectively, the HIF transcription factor system senses virus-induced hypoxic stress to induce cell-intrinsic antiviral responses and limit inflammation.


Subject(s)
Encephalitis , Herpes Simplex , Humans , Animals , Mice , Inflammation , Neurons , Hypoxia , Antiviral Agents/pharmacology
2.
Nat Commun ; 14(1): 7871, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052784

ABSTRACT

Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs). Importantly, LR-USCs generate significantly more mesDA neurons under midbrain and hindbrain conditions in vitro and in vivo. We demonstrate that midbrain-patterned LR-USC progenitors transplanted into 6-hydroxydopamine-lesioned rats restore function in a clinically relevant non-pharmacological behavioral test, whereas midbrain-patterned hESC-derived progenitors do not. This strategy demonstrates how lineage restriction can prevent the development of undesirable lineages and enhance the conditions necessary for mesDA neuron generation.


Subject(s)
Dopaminergic Neurons , Pluripotent Stem Cells , Humans , Rats , Animals , Dopaminergic Neurons/metabolism , Transcription Factors/metabolism , Cell Differentiation/physiology , Mesencephalon , Pluripotent Stem Cells/metabolism
3.
STAR Protoc ; 4(3): 102451, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37481727

ABSTRACT

Here, we present a protocol for generating miniaturized controlled midbrain organoids (MiCOs) of reproducible size and cellular composition, without a necrotic center. We describe steps for maintaining and passaging human pluripotent stem cells, generating MiCOs using AggreWell™400, and maintaining them in an EB-Disk360on an orbital shaker, eliminating the need for Matrigel or a spinner flask and preventing organoid fusion. We then detail organoid collection for different endpoint analysis. This protocol is suitable for compound screening and disease modeling studies.


Subject(s)
Mesencephalon , Pluripotent Stem Cells , Humans , Cells, Cultured , Organoids
4.
J Med Radiat Sci ; 70(4): 498-508, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37315100

ABSTRACT

Magnetic resonance imaging (MRI) is being integrated into routine radiation therapy (RT) planning workflows. To reap the benefits of this imaging modality, patient positioning, image acquisition parameters and a quality assurance programme must be considered for accurate use. This paper will report on the implementation of a retrofit MRI Simulator for RT planning, demonstrating an economical, resource efficient solution to improve the accuracy of MRI in this setting.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Humans , Radiotherapy Planning, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Radiotherapy, Image-Guided/methods
5.
Mol Neurobiol ; 60(6): 3239-3260, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36840844

ABSTRACT

Circular RNAs (circRNAs) are key regulators of cellular processes, are abundant in the nervous system, and have putative regulatory roles during neural differentiation. However, the knowledge about circRNA functions in brain development is limited. Here, using RNA-sequencing, we show that circRNA levels increased substantially over the course of differentiation of human embryonic stem cells into rostral and caudal neural progenitor cells (NPCs), including three of the most abundant circRNAs, ciRS-7, circRMST, and circFAT3. Knockdown of circFAT3 during early neural differentiation resulted in minor transcriptional alterations in bulk RNA analysis. However, single-cell transcriptomics of 30 and 90 days differentiated cerebral organoids deficient in circFAT3 showed a loss of telencephalic radial glial cells and mature cortical neurons, respectively. Furthermore, non-telencephalic NPCs in cerebral organoids showed changes in the expression of genes involved in neural differentiation and migration, including FAT4, ERBB4, UNC5C, and DCC. In vivo depletion of circFat3 in mouse prefrontal cortex using in utero electroporation led to alterations in the positioning of the electroporated cells within the neocortex. Overall, these findings suggest a conserved role for circFAT3 in neural development involving the formation of anterior cell types, neuronal differentiation, or migration.


Subject(s)
Neocortex , Neural Stem Cells , Mice , Animals , Humans , RNA, Circular/genetics , Cell Differentiation/genetics , Neurogenesis/genetics , Epidermal Growth Factor , Cadherins
6.
Front Cell Dev Biol ; 10: 976549, 2022.
Article in English | MEDLINE | ID: mdl-36046338

ABSTRACT

Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells. In order to develop novel stem cell protocols, we characterize at high resolution the development of the porcine medial entorhinal cortex by tracing neuronal and glial subtypes from mid-gestation to the adult brain to identify the transcriptomic profile of progenitor and adult stellate cells. Importantly, we could confirm the robustness of our data by extracting developmental factors from the identified intermediate stellate cell cluster and implemented these factors to generate putative intermediate stellate cells from human induced pluripotent stem cells. Six transcription factors identified from the stellate cell cluster including RUNX1T1, SOX5, FOXP1, MEF2C, TCF4, EYA2 were overexpressed using a forward programming approach to produce neurons expressing a unique combination of RELN, SATB2, LEF1 and BCL11B observed in stellate cells. Further analyses of the individual transcription factors led to the discovery that FOXP1 is critical in the reprogramming process and omission of RUNX1T1 and EYA2 enhances neuron conversion. Our findings contribute not only to the profiling of cell types within the developing and adult brain's medial entorhinal cortex but also provides proof-of-concept for using scRNAseq data to produce entorhinal intermediate stellate cells from human pluripotent stem cells in-vitro.

7.
Mol Neurobiol ; 58(5): 2075-2087, 2021 May.
Article in English | MEDLINE | ID: mdl-33415685

ABSTRACT

Neurons produced by reprogramming of other cell types are used to study cellular mechanisms of age-related neurodegenerative diseases. To model Alzheimer's disease and other tauopathies, it is essential that alternative splicing of the MAPT transcript in these neurons produces the relevant tau isoforms. Human neurons derived from induced pluripotent stem cells, however, express tau isoform compositions characteristic of foetal neurons rather than of adult neurons unless cultured in vitro for extended time periods. In this study, we characterised the dynamics of the MAPT and APP alternative splicing during a developmental time-course of porcine and murine cerebral cortices. We found age-dependent and species-specific isoform composition of MAPT, including 3R and 4R isoforms in the porcine adult brain similar to that of the adult human brain. We converted adult and embryonic fibroblasts directly into induced neurons and found similar developmental patterns of isoform composition, notably, the 3R and 4R isoforms relevant to the pathogenesis of Alzheimer's disease. Also, we observed cell-type-specific isoform expression of APP transcripts during the conversion. The approach was further used to generate induced neurons from transgenic pigs carrying Alzheimer's disease-causing mutations. We show that such neurons authentically model the first crucial steps in AD pathogenesis.


Subject(s)
Aging/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Nerve Degeneration/metabolism , Neurons/metabolism , tau Proteins/metabolism , Alternative Splicing , Animals , Animals, Genetically Modified , Humans , Induced Pluripotent Stem Cells/metabolism , Neurodegenerative Diseases/metabolism , Swine
8.
Methods Mol Biol ; 2239: 135-151, 2021.
Article in English | MEDLINE | ID: mdl-33226617

ABSTRACT

Human-induced pluripotent stem cells (iPSCs) can be generated from patient-specific somatic cells by forced expression of the transcription factors OCT4, SOX2, KLF4, and c-MYC. Sustained expression of the transgenes during reprogramming is crucial for the successful derivation of iPSCs. Integrating retroviruses have been used to achieve the required prolonged expression; however, issues of undesirable transgene expression in the iPSC-derived cell types post reprogramming can occur. Alternative non-integrating approaches to reprogram somatic cells into pluripotency have been established. Here, we describe a detailed method for generating human iPSCs from fibroblasts and peripheral blood mononuclear cells (PBMCs) using the non-integrating episomal plasmids. The delivery of the episomal plasmids into the somatic cells is achieved using a nucleofection technique, and reprogramming is performed in chemically defined media. This process takes approximately 30 days to establish the iPSC colonies. We also describe a method for growing iPSCs on vitronectin as well as procedures for the long-term expansion of iPSCs on human fibroblast feeder cells.


Subject(s)
Cellular Reprogramming/genetics , Culture Media/chemistry , Induced Pluripotent Stem Cells/cytology , Plasmids/metabolism , Transcription Factors/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Electroporation/methods , Feeder Cells , Fibroblasts/cytology , Fibroblasts/metabolism , Genetic Vectors , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Plasmids/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcription Factors/genetics , Vitronectin
9.
Stem Cell Res ; 48: 101984, 2020 10.
Article in English | MEDLINE | ID: mdl-32971463

ABSTRACT

Direct neuronal conversion describes the process of generating induced neurons from somatic cells such as fibroblasts by overexpressing cell type-specific transcription factors, microRNAs or by culturing in the presence of small molecules. This was first achieved by expressing Brn2, Ascl1 and Myt1L in mouse fibroblasts, and was later achieved in human cells by the inclusion of additional factors such as NeuroD1. Here, we present the first protocol for directly converting porcine fibroblasts into induced neurons. We used lentivirus-mediated delivery of previously identified neuron-specifying transcription factors and microRNAs and evaluated morphology and neuron marker expression after ten days of conversion. We found that Ascl1 and microRNAs, miR-9/9* and miR-124 together generated more neuronal cells than other conditions tested. The porcine induced neurons expressed common mature markers such as MAP2 and Synaptophysin after four weeks of conversion. Transcriptomic analysis revealed that fibroblast-specific signatures were silenced early in the conversion process, while the neuron-specific genes became more abundant during conversion. We generated a heterogeneous population of glutamatergic and GABAergic neurons.


Subject(s)
Cellular Reprogramming , MicroRNAs , Animals , Fibroblasts , MicroRNAs/genetics , Neurons , Swine , Transcription Factors/genetics
10.
Curr Protoc Mol Biol ; 133(1): e125, 2020 12.
Article in English | MEDLINE | ID: mdl-32986282

ABSTRACT

The lentivirus system enables efficient genetic modification of both dividing and non-dividing cells and therefore is a useful tool for elucidating developmental processes and disease pathogenesis. The development of third-generation lentiviruses has resulted in improved biosafety, low immunogenicity, and substantial packaging capabilities. However, because third-generation lentiviruses require successful co-transfection with four plasmids, this typically means that lower titers are attained. This is problematic, as it is often desirable to produce purified lentiviruses with high titers (>1 × 108 TU/ml), especially for in vivo applications. The manufacturing process for lentiviruses involves several critical experimental factors that can influence titer, purity, and transduction efficiency. Here, we describe a straightforward, stepwise protocol for the reproducible manufacture of high-titer third-generation lentiviruses (1 × 108 to 1 × 109 TU/ml). This optimized protocol enhances transgene expression by use of Lipofectamine transfection and optimized serum replacement medium, a single ultracentrifugation step, use of a sucrose cushion, and addition of a histone deacetylation inhibitor. Furthermore, we provide alternate methods for titration analyses, including functional and genomic integration analyses, using common laboratory techniques such as FACS as well as genomic DNA extraction and qPCR. These optimized methods will be beneficial for investigating developmental processes and disease pathogenesis in vitro and in vivo. © 2020 The Authors. Basic Protocol 1: Lentivirus production Support Protocol: Lentivirus concentration Basic Protocol 2: Lentivirus titration Alternate Protocol 1: Determination of viral titration by FACS analysis Alternate Protocol 2: Determination of viral titration by genome integration analysis.


Subject(s)
Gene Transfer Techniques , Genetic Engineering/methods , Genetic Vectors/genetics , Lentivirus/genetics , Transgenes , Animals , Cell Culture Techniques , Cell Line , Flow Cytometry , Gene Expression , Genetic Vectors/biosynthesis , Genetic Vectors/isolation & purification , HEK293 Cells , Humans , Plasmids , Transduction, Genetic , Transfection
11.
Stem Cell Res ; 48: 101945, 2020 10.
Article in English | MEDLINE | ID: mdl-32791483

ABSTRACT

The differentiation of patient-specific induced pluripotent stem cells (iPSCs) into specific neuronal subtypes has been exploited as an approach for modeling a variety of neurological disorders. However, achieving a highly pure population of neurons is challenging when using directed differentiation methods, especially for neuronal subtypes generated by complex and protracted protocols. In this study, we efficiently produced highly pure populations of regionally specified CNS neurons by using a modified NGN2-Puromycin direct conversion protocol. The protocol is amenable across a range of iPSC lines, with more than 95% of cells at day 21 positive for the neuronal marker MAP2. We found that conversion from pluripotent stem cells resulted in neurons from the central and peripheral nervous system; however, by incorporating a short CNS patterning step, we eliminated these peripheral neurons. Furthermore, we used the patterning step to control the rostral-caudal identity. This approach of sequential patterning and conversion produced pure populations of forebrain neurons, when patterned with SMAD inhibitors. Additionally, when SMAD inhibitors and WNT agonists were applied, the approach produced anterior hindbrain excitatory neurons and resulted in a neuronal population containing VSX2/SHOX2 V2a interneurons. Overall, this sequential patterning and conversion protocol can be used for the production of a variety of CNS excitatory neurons from patient-derived iPSCs, and is a highly versatile system for investigating early disease events for a range of neurological disorders including Alzheimer's disease, motor neurons disease and spinal cord injury.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation , Humans , Neurons
12.
Stem Cell Res ; 45: 101781, 2020 05.
Article in English | MEDLINE | ID: mdl-32305865

ABSTRACT

We generated an induced pluripotent stem cell (iPSC) line from fibroblasts of a clinically diagnosed 70 year old female Parkinson's disease (PD) patient heterozygous for a pathogenic missense variant (p.G2019S; c. 6055 G > A) in the leucine-rich repeat kinase 2 (LRRK2) gene by using non-integrating Sendai viruses. The DANi-011A iPSC line has a normal karyotype and is free from Sendai viruses. The expression of pluripotent markers in the iPSC line was confirmed by immunofluorescent staining, and we confirmed its ability to differentiate into the three germ layers. The DANi-011A iPSC line can be used for modeling PD and as a drug-screening platform.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Aged , Cell Line , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Parkinson Disease/genetics
13.
Stem Cell Res ; 42: 101657, 2020 01.
Article in English | MEDLINE | ID: mdl-31786474

ABSTRACT

We generated eight induced pluripotent stem cell (iPSC) lines from Parkinson's disease (PD) patients with different familial mutations using non-integrating episomal plasmids. All iPSC lines have a normal karyotype, express pluripotent genes including POU5F1, NANOG, and show alkaline phosphatase activity, as well as the ability to differentiate into all three germ layers. These PD iPSC lines can be used for disease modeling to identify PD mechanisms and for the development or stratification of new drugs.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/genetics , Adult , Cell Line , Humans , Middle Aged , Mutation , Parkinson Disease/pathology
14.
Stem Cell Res ; 41: 101645, 2019 12.
Article in English | MEDLINE | ID: mdl-31759291

ABSTRACT

Porcine embryonic and induced pluripotent stem cells (ESCs; iPSCs) have proven difficult to derive and maintain in vitro. This may be due to inappropriate culturing conditions and incomplete activation of proper pluripotency networks. To this end, we characterized the transcriptome of porcine inner cell mass, epiblast, and transgene-dependent iPSCs in relation to human and mouse embryonic and epiblast stem cells. We found that porcine inner cell mass has a unique pluripotency transcriptome distinct from human and mouse ESCs but shares more features with human naïve-like than primed stem cell states, as illustrated by their expression of KLF17 but not KLF2. Our data further show that current reprogramming strategies fail to silence parental fibroblast-specific genes and to activate specific signalling pathways that may be important for porcine pluripotency. Accordingly, we used human naïve culturing conditions to improve reprogramming efficiencies of porcine embryonic fibroblasts and enable essential naïve stem cell markers such as NANOG, KLF17 and CDH1to be expressed. The resultant porcine iPSC-like cells display a transcriptomic signature more closely resembling an inner cell mass state. These results represent new important steps towards generating bona fide porcine iPSCs and their great potential in translational medicine.


Subject(s)
Antigens, Differentiation/biosynthesis , Cell Differentiation , Gene Expression Profiling , Induced Pluripotent Stem Cells/metabolism , Transcriptome , Animals , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Germ Layers/cytology , Germ Layers/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Species Specificity , Swine
15.
Front Cell Dev Biol ; 6: 54, 2018.
Article in English | MEDLINE | ID: mdl-29868584

ABSTRACT

Gene editing in human embryonic stem cells (hESCs) has been significantly enhanced by the discovery and development of CRISPR Cas9, a programmable nuclease system that can introduce targeted double-stranded breaks. The system relies on the optimal selection of a sgRNA sequence with low off-targets and high efficiency. We designed an improved monomeric red fluorescent protein reporter, GEmCherry2, for assessing CRISPR Cas9 activity and for optimizing sgRNA. By incorporating an out-of-frame sequence to the N-terminal of the red fluorescent protein mCherry, we created a visual tool for assessing the indel frequency after cutting with CRISPR Cas9. When a sgRNA-Cas9 construct is co-transfected with a corresponding GEmCherry2 construct, single nucleotide indels can move the GEmCherry2 sequence back in-frame and allow quantification and comparison of the efficiency of different sgRNA target sites by measuring red fluorescence. With this GEmCherry2 assay, we compared four target sites in the safe harbor AAVS1 locus and found significant differences in target site activity. We verified the activity using TIDE, which ranked our target sites in a similar order as the GEmCherry2 system. We also identified an AAV short inverted terminal repeat sequence within the Cas9 construct that, upon removal significantly improved transient transfection and expression in hESCs. Moreover, using GEmCherry2, we designed a sgRNA to target SORCS2 in hESCs and successfully introduced indels into the coding sequence of SORCS2.

16.
Front Cell Dev Biol ; 6: 5, 2018.
Article in English | MEDLINE | ID: mdl-29468158

ABSTRACT

The P-type ATPases family consists of ion and lipid transporters. Their unique diversity in function and expression is critical for normal development. In this study we investigated human pluripotent stem cells (hPSC) and different neural progenitor states to characterize the expression of the plasma membrane calcium ATPases (PMCAs) during human neural development and in mature mesencephalic dopaminergic (mesDA) neurons. Our RNA sequencing data identified a dynamic change in ATPase expression correlating with the differentiation time of the neural progenitors, which was independent of the neuronal progenitor type. Expression of ATP2B1 and ATP2B4 were the most abundantly expressed, in accordance with their main role in Ca2+ regulation and we observed all of the PMCAs to have a subcellular punctate localization. Interestingly in hPSCs ATP2B1 and ATP2B3 were highly expressed in a cell cycle specific manner and ATP2B2 and ATP2B4 were highly expressed in a hPSC sub-population. In neural rosettes a strong apical PMCA expression was identified in the luminal region. Lastly, we confirmed all PMCAs to be expressed in mesDA neurons, however at varying levels. Our results reveal that PMCA expression dynamically changes during stem cell differentiation and highlights the diverging needs of cell populations to regulate and properly integrate Ca2+ changes, which can ultimately correspond to changes in specific stem cell transcription states.

17.
Cell Mol Gastroenterol Hepatol ; 2(1): 92-109, 2016 Jan.
Article in English | MEDLINE | ID: mdl-28174705

ABSTRACT

BACKGROUND & AIMS: Hirschsprung disease (HSCR) is caused by failure of cells derived from the neural crest (NC) to colonize the distal bowel in early embryogenesis, resulting in absence of the enteric nervous system (ENS) and failure of intestinal transit postnatally. Treatment is by distal bowel resection, but neural cell replacement may be an alternative. We tested whether aneuronal (aganglionic) colon tissue from patients may be colonized by autologous ENS-derived cells. METHODS: Cells were obtained and cryopreserved from 31 HSCR patients from the proximal resection margin of colon, and ENS cells were isolated using flow cytometry for the NC marker p75 (nine patients). Aneuronal colon tissue was obtained from the distal resection margin (23 patients). ENS cells were assessed for NC markers immunohistologically and by quantitative reverse-transcription polymerase chain reaction, and mitosis was detected by ethynyl-2'-deoxyuridine labeling. The ability of human HSCR postnatal ENS-derived cells to colonize the embryonic intestine was demonstrated by organ coculture with avian embryo gut, and the ability of human postnatal HSCR aneuronal colon muscle to support ENS formation was tested by organ coculture with embryonic mouse ENS cells. Finally, the ability of HSCR patient ENS cells to colonize autologous aneuronal colon muscle tissue was assessed. RESULTS: ENS-derived p75-sorted cells from patients expressed multiple NC progenitor and differentiation markers and proliferated in culture under conditions simulating Wnt signaling. In organ culture, patient ENS cells migrated appropriately in aneural quail embryo gut, and mouse embryo ENS cells rapidly spread, differentiated, and extended axons in patient aneuronal colon muscle tissue. Postnatal ENS cells derived from HSCR patients colonized autologous aneuronal colon tissue in cocultures, proliferating and differentiating as neurons and glia. CONCLUSIONS: NC-lineage cells can be obtained from HSCR patient colon and can form ENS-like structures in aneuronal colonic muscle from the same patient.

18.
Development ; 142(11): 1918-36, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26015536

ABSTRACT

Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained in vivo. This knowledge might help to instruct efforts to generate mDA neurons in vitro, which holds promise not only for cell replacement therapy, but also for disease modeling and drug discovery. In this Primer, we will focus on recent developments in understanding the molecular mechanisms that regulate the development of mDA neurons in vivo, and how they have been used to generate human mDA neurons in vitro from pluripotent stem cells or from somatic cells via direct reprogramming. Current challenges and future avenues in the development of a regenerative medicine for PD will be identified and discussed.


Subject(s)
Dopaminergic Neurons/cytology , Mesencephalon/cytology , Neurogenesis , Animals , Body Patterning/genetics , Dopaminergic Neurons/metabolism , Gene Expression Regulation, Developmental , Humans , Models, Biological , Neurogenesis/genetics
19.
Stem Cells ; 33(6): 1759-70, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25753817

ABSTRACT

The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3ß and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named "caudal neural progenitors" (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube.


Subject(s)
Cell Lineage , Central Nervous System/cytology , Neural Crest/cytology , Neural Stem Cells/cytology , Neural Tube/cytology , Peripheral Nervous System/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Differentiation , Mesoderm/cytology , Mice, Inbred C57BL , Neural Plate/cytology , Neuroepithelial Cells/cytology , Rats, Sprague-Dawley
20.
PLoS One ; 9(7): e101718, 2014.
Article in English | MEDLINE | ID: mdl-25000412

ABSTRACT

Friedreich ataxia (FRDA) is an autosomal recessive disease characterised by neurodegeneration and cardiomyopathy that is caused by an insufficiency of the mitochondrial protein, frataxin. Our previous studies described the generation of FRDA induced pluripotent stem cell lines (FA3 and FA4 iPS) that retained genetic characteristics of this disease. Here we extend these studies, showing that neural derivatives of FA iPS cells are able to differentiate into functional neurons, which don't show altered susceptibility to cell death, and have normal mitochondrial function. Furthermore, FA iPS-derived neural progenitors are able to differentiate into functional neurons and integrate in the nervous system when transplanted into the cerebellar regions of host adult rodent brain. These are the first studies to describe both in vitro and in vivo characterization of FA iPS-derived neurons and demonstrate their capacity to survive long term. These findings are highly significant for developing FRDA therapies using patient-derived stem cells.


Subject(s)
Cerebellum/cytology , Friedreich Ataxia/pathology , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Adult , Animals , Cell Death , Cell Differentiation , Cell Line , Cell Survival , Female , Gene Expression Regulation , Humans , Iron-Binding Proteins/metabolism , Mitochondria/metabolism , Neural Stem Cells/metabolism , Rats , Frataxin
SELECTION OF CITATIONS
SEARCH DETAIL
...