Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 18(20): 5571-5, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18805007

ABSTRACT

As a continuation of our efforts to discover and develop the apoptosis inducing 4-aryl-4H-chromenes as potential anticancer agents, we explored the removal of the chiral center at the 4-position and prepared a series of 4-aryl-2-oxo-2H-chromenes. It was found that, in general, removal of the chiral center and replacement of the 2-amino group with a 2-oxo group were tolerated and 4-aryl-2-oxo-2H-chromenes exhibited SAR similar to 4-aryl-2-amino-4H-chromenes. The 4-aryl-2-oxo-2H-chromenes with a N-methyl pyrrole fused at the 7,8-positions were highly active with compound 2a having an EC(50) value of 13 nM in T47D cells. It was found that an OMe group was preferred at the 7-position. 7-NMe(2), 7-NH(2), 7-Cl and 7,8 fused pyrido analogs all had low potency. These 4-aryl-2-oxo-2H-chromenes are a series of potent apoptosis inducers with potential advantage over the 4-aryl-2-amino-4H-chromenes series via elimination of the chiral center at the 4-position.


Subject(s)
Apoptosis , Caspases/metabolism , Chromones/chemistry , Chromones/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry, Pharmaceutical/methods , Chromones/pharmacology , Drug Design , Drug Screening Assays, Antitumor , Enzyme Activation , Humans , Models, Chemical , Pyrroles/chemistry , Structure-Activity Relationship
2.
J Med Chem ; 51(3): 417-23, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18197614

ABSTRACT

In our continuing effort to discover and develop apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the structure-activity relationship (SAR) of alkyl substituted pyrrole fused at the 7,8-positions. A methyl group substituted at the nitrogen in the 7-position of the pyrrole ring led to a series of potent apoptosis inducers with potency in the low nanomolar range. These compounds were also found to be low nanomolar or subnanomolar inhibitors of cell growth, and they inhibited tubulin polymerization, indicating that methylation of the 7-position nitrogen does not change the mechanism of action of these chromenes. Compound 2d was identified as a highly potent apoptosis inducer with an EC50 value of 2 nM and a highly potent inhibitor of cell growth with a GI50 value of 0.3 nM in T47D cells.


Subject(s)
Antineoplastic Agents/chemical synthesis , Apoptosis , Benzopyrans/chemical synthesis , Caspases/metabolism , Indoles/chemical synthesis , Pyrroles/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzopyrans/chemistry , Benzopyrans/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Activation , Humans , Indoles/chemistry , Indoles/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
3.
Bioorg Med Chem Lett ; 18(2): 603-7, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18077161

ABSTRACT

As a continuation of our efforts to discover and develop apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored modifications at the 2- and 3-positions. It was found that replacement of the 3-cyano group by an ester, including methyl and ethyl ester, resulted in >200-fold reduction of activity. Conversion of the 2-amino group into an amide or urea resulted in 4- to 10-fold drop of activity. Similarly, converting the 2-amino group into a hydrogen resulted in 4- to 10-fold reduction of activity. Compound 3d was highly active with an EC(50) value of 29 nM and a GI(50) value of 6 nM in T47D cells. Importantly, the 2-H analog 3d was found to be much more stable under acidic conditions compared to the 2-NH(2) analog 3b, suggesting that 2-H analogs might have better bioavailability than the 2-NH(2) analogs.


Subject(s)
Apoptosis/drug effects , Benzopyrans/pharmacology , Caspases/metabolism , Benzopyrans/chemistry , Cell Division/drug effects , Cell Line, Tumor , Humans , Structure-Activity Relationship
4.
J Med Chem ; 50(12): 2858-64, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17497765

ABSTRACT

As a continuation of our efforts to discover and develop the apoptosis-inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the SAR of fused rings at the 7,8-positions. It was found that a five-member aromatic ring, such as pyrrolo with nitrogen at either the 7- or 9-position, is preferred. A six-member aromatic ring, such as benzo or pyrido, also led to potent compounds. The SAR of the 4-aryl group was found to be similar for chromenes with a fused ring at the 7,8-positions. These compounds were found to inhibit tubulin polymerization, indicating that cyclization of the 7,8-positions into a ring does not change the mechanism of action. Compound 2h was identified to be a highly potent apoptosis inducer with an EC50 of 5 nM and a highly potent inhibitor of cell proliferation with a GI50 of 8 nM in T47D cells.


Subject(s)
Antineoplastic Agents/chemical synthesis , Apoptosis , Benzopyrans/chemical synthesis , Caspases/metabolism , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Indoles/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzopyrans/chemistry , Benzopyrans/pharmacology , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 15(21): 4745-51, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16143530

ABSTRACT

As a continuation of our efforts to discover and develop the apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the SAR of 4-aryl-4H-chromenes with modifications at the 7- and 5-, 6-, 8-positions. It was found that a small hydrophobic group, such as NMe2, NH2, NHEt, and OMe, is preferred at the 7-position. Di-substitution at either the 5,7-positions or the 6,7-positions generally led to a large decrease in potency. Di-substitution at the 7,8-positions, in general, was found to result in potent compounds. 7-NMe2, 7-NHEt, 7-OMe, and 7,8-di-NH2 analogs were found to have similar SAR for the 4-aryl group, and several 7-substituted and 7,8-di-substituted analogs were found to have similar potencies as the lead compound MX58151 (2a) both as caspase activators and inhibitors of cell proliferation.


Subject(s)
Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Benzopyrans/chemical synthesis , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Caspases/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical/methods , Enzyme Activation/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Structure-Activity Relationship
6.
J Med Chem ; 47(25): 6299-310, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15566300

ABSTRACT

By applying a novel cell- and caspase-based HTS assay, 2-amino-3-cyano-7-(dimethylamino)-4-(3-methoxy-4,5-methylenedioxyphenyl)-4H-chromene (1a) has been identified as a potent apoptosis inducer. Compound 1a was found to induce nuclear fragmentation and PARP cleavage, as well as to arrest cells at the G(2)/M stage and to induce apoptosis as determined by the flow cytometry analysis assay in multiple human cell lines (e.g. Jurkat, T47D). Through structure-activity relationship (SAR) studies of the 4-aryl group, a 4- and 7-fold increase in potency was obtained from the screening hit 1a to the lead compounds 2-amino-4-(3-bromo-4,5-dimethoxyphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (1c) and 2-amino-3-cyano-7-(dimethylamino)-4-(5-methyl-3-pyridyl)-4H-chromene (4e), with an EC(50) of 19 and 11 nM in the caspase activation assay in T47D breast cancer cells, respectively. The 2-amino-4-aryl-3-cyano-7-(dimethylamino)-4H-chromenes also were found to be highly active in the growth inhibition MTT assay, with GI(50) values in the low nanomolar range for compound 1c. Significantly, compound 1c was found to have a GI(50) value of 2 nM in the paclitaxel resistant, p-glycoprotein overexpressed, MES-SA/DX5 tumor cells. Functionally, compound 1c was found to be a potent inhibitor of tubulin polymerization and to effectively inhibit the binding of colchicine to tubulin. These results confirm that the cell-based caspase activation assay is a powerful tool for the discovery of potent apoptosis inducers and suggest that the 4-aryl-4H-chromenes have the potential to be developed into future anticancer agents.


Subject(s)
Antineoplastic Agents/chemistry , Apoptosis , Benzopyrans/chemistry , Caspases/metabolism , Dioxoles/chemistry , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Biopolymers , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Proliferation/drug effects , Dioxoles/pharmacology , Drug Screening Assays, Antitumor , Enzyme Activation , Humans , Poly(ADP-ribose) Polymerases/metabolism , Structure-Activity Relationship , Tubulin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL