Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(3): e11114, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469042

ABSTRACT

Plant-insect interactions play a crucial role in shaping terrestrial ecosystems, influencing abundance and distribution of plant species. In the present study, we investigated leaf-mining patterns on fossil leaves from Pliocene strata of the Mahuadanr Valley, Jharkhand, eastern India, deposited under a seasonal tropical climate, and reported complex interactions between plants and insects. We identified 11 distinct mining morphotypes. These morphotypes were mainly found on Dipterocarpaceae, Fabaceae, Lauraceae, and Moraceae; similar mining traces were also observed in the contemporary vegetation surrounding the fossil site. Although mining richness was relatively high, only 2.6% of all leaves in the fossil assemblage were mined. We compared mining richness and abundance values with previously reported values for galling. While richness was slightly lower for galling, almost 50% of all fossil leaves were galled. A literature survey on mining and galling patterns in modern vegetation suggests that there is no global explanation for richness of mining or gall-inducing insects. Thus, low nutrient availability in the ancient forest, dominance of semideciduous leaves with hard texture, and different habitats in the same forest ecosystem, such as well-drained forests and riparian stands, may all have favored different types of specialized plant-insect interactions.

2.
Sci Rep ; 13(1): 5702, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029134

ABSTRACT

We report a new type of fossil margin galls arranged in a linear series on dicot leaf impressions from the latest Neogene (Pliocene) sediments of the Chotanagpur Plateau, Jharkhand, eastern India. We collected ca. 1500 impression and compression leaf fossils, of which 1080 samples bear arthropod damage referable to 37 different damage types (DT) in the 'Guide to Insect (and Other) Damage Types in Compressed Plant Fossils'. A few leaf samples identified as Ipomoea L. (Convolvulaceae) have specific margin galls that do not match any galling DT previously described. This type of galling is characterized by small, linearly arranged, irregular, sessile, sub-globose, solitary, indehiscent, solid pouch-galls with irregular ostioles. The probable damage inducers of the present galling of the foliar margin might be members of Eriophyidae (Acari). The new type of gall suggests that marginal gall-inducing mites on leaves of Ipomoea did not change their host preference at the genus level since the Pliocene. The development of marginal leaf galling in Ipomoea is linked to extrafloral nectaries that do not offer protection against arthropod galling but indirectly protect the plant against herbivory from large mammals.


Subject(s)
Ipomoea , Mites , Animals , Insecta , Plants , Plant Leaves , Plant Tumors , Mammals
3.
Ann Bot ; 131(5): 769-787, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36805162

ABSTRACT

BACKGROUND AND AIMS: Cork oaks (Quercus section Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects might explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks. METHODS: We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction site-associated DNA sequencing (RAD-seq), and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth-death model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters and forest biomes occupied by modern species to infer ancestral climatic and biotic niches. KEY RESULTS: East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form and texture was correlated, in part, with multiple transitions from ancestral humid temperate climates to mediterranean, arid and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process. CONCLUSIONS: Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (section Ilex) also originated in temperate biomes but migrated southwards and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographical histories and deep-time phylogenetic legacies (in cold and drought tolerance, nutrient storage and fire resistance) thus account for the modern species mosaic of Western Eurasian oak communities, which are composed of oaks belonging to four sections.


Subject(s)
Quercus , Phylogeny , Quercus/genetics , Ecosystem , Forests , Base Sequence
4.
New Phytol ; 238(6): 2668-2684, 2023 06.
Article in English | MEDLINE | ID: mdl-36651063

ABSTRACT

Previous paleobotanical work concluded that Paleogene elements of the sclerophyllous subhumid vegetation of western Eurasia and western North America were endemic to these disjunct regions, suggesting that the southern areas of the Holarctic flora were isolated at that time. Consequently, molecular studies invoked either parallel adaptation to dry climates from related ancestors, or long-distance dispersal in explaining disjunctions between the two regions, dismissing the contemporaneous migration of dry-adapted lineages via land bridges as unlikely. We report Vauquelinia (Rosaceae), currently endemic to western North America, in Cenozoic strata of western Eurasia. Revision of North American fossils previously assigned to Vauquelinia confirmed a single fossil-species of Vauquelinia and one of its close relative Kageneckia. We established taxonomic relationships of fossil-taxa using diagnostic character combinations shared with modern species and constructed a time-calibrated phylogeny. The fossil record suggests that Vauquelinia, currently endemic to arid and subdesert environments, originated under seasonally arid climates in the Eocene of western North America and subsequently crossed the Paleogene North Atlantic land bridge (NALB) to Europe. This pattern is replicated by other sclerophyllous, dry-adapted and warmth-loving plants, suggesting that several of these taxa potentially crossed the North Atlantic via the NALB during Eocene times.


Subject(s)
Fossils , Plants , Phylogeny , Desert Climate , Acclimatization
5.
Plant J ; 109(4): 909-926, 2022 02.
Article in English | MEDLINE | ID: mdl-34808015

ABSTRACT

Standard models of plant speciation assume strictly dichotomous genealogies in which a species, the ancestor, is replaced by two offspring species. The reality in wind-pollinated trees with long evolutionary histories is more complex: species evolve from other species through isolation when genetic drift exceeds gene flow; lineage mixing can give rise to new species (hybrid taxa such as nothospecies and allopolyploids). The multi-copy, potentially multi-locus 5S rDNA is one of few gene regions conserving signal from dichotomous and reticulate evolutionary processes down to the level of intra-genomic recombination. Therefore, it can provide unique insights into the dynamic speciation processes of lineages that diversified tens of millions of years ago. Here, we provide the first high-throughput sequencing (HTS) of the 5S intergenic spacers (5S-IGS) for a lineage of wind-pollinated subtropical to temperate trees, the Fagus crenata - F. sylvatica s.l. lineage, and its distant relative F. japonica. The observed 4963 unique 5S-IGS variants reflect a complex history of hybrid origins, lineage sorting, mixing via secondary gene flow, and intra-genomic competition between two or more paralogous-homoeologous 5S rDNA lineages. We show that modern species are genetic mosaics and represent a striking case of ongoing reticulate evolution during the past 55 million years.


Subject(s)
DNA, Ribosomal/genetics , Evolution, Molecular , Fagus/genetics , Pollination , Trees/genetics , DNA, Intergenic , Gene Flow , High-Throughput Nucleotide Sequencing , Phylogeny , RNA, Ribosomal, 5S/genetics , Wind
6.
Am J Bot ; 108(8): 1500-1524, 2021 08.
Article in English | MEDLINE | ID: mdl-34458984

ABSTRACT

PREMISE: The Fagaceae comprise around 1000 tree species in the Northern Hemisphere. Despite an extensive fossil pollen record, reconstructing biogeographic patterns is hampered because it is difficult to achieve good taxonomic resolution with light microscopy alone. We investigate dispersed pollen of Fagaceae from the Miocene Søby flora, Denmark. We explore the latitudinal gradient in Fagaceae distribution during the Miocene Climatic Optimum (MCO) in Europe and the Northern Hemisphere to compare it with the Eocene Warmhouse and the present. METHODS: We investigated dispersed pollen using light and scanning electron microscopy. We assessed biogeographic patterns in Fagaceae during two warm periods in Earth history (MCO, Eocene) and the present. RESULTS: Eight species of Fagaceae were recognized in the Søby flora. Of these, Fagus had a continuous Mediterranean to subarctic distribution during MCO; Quercus sect. Cerris and castaneoids had northern limits in Denmark, and evergreen Quercus sect. Ilex in Central Europe. In a northern hemispheric context, Fagus and sections of Quercus had more northerly distribution limits during Eocene and MCO with maximum northward extensions during Eocene (Fagus, castaneoids) or Oligo-Miocene (Quercus sects. Cerris and Ilex). The known distribution of the extinct Tricolporopollenites theacoides during MCO included Central Europe and East China, while this taxon thrived in South China during Eocene. CONCLUSIONS: More northerly distributions during MCO and Eocene probably were determined by temperature. In contrast, fossil occurrences in areas that are arid or semi-humid today were determined by maritime conditions in these areas (western North America, Central Asia) during the Cenozoic.


Subject(s)
Fossils , Quercus , China , Denmark , Phylogeny , Pollen
7.
Mol Ecol Resour ; 21(2): 495-510, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32997899

ABSTRACT

Measuring biological diversity is a crucial but difficult undertaking, as exemplified in oaks where complex patterns of morphological, ecological, biogeographical and genetic differentiation collide with traditional taxonomy, which measures biodiversity in number of species (or higher taxa). In this pilot study, we generated high-throughput sequencing amplicon data of the intergenic spacer of the 5S nuclear ribosomal DNA cistron (5S-IGS) in oaks, using six mock samples that differ in geographical origin, species composition and pool complexity. The potential of the marker for automated genotaxonomy applications was assessed using a reference data set of 1,770 5S-IGS cloned sequences, covering the entire taxonomic breadth and distribution range of western Eurasian Quercus, and applying similarity (blast) and evolutionary approaches (maximum-likelihood trees and Evolutionary Placement Algorithm). Both methods performed equally well, allowing correct identification of species in sections Ilex and Cerris in the pure and mixed samples, and main lineages shared by species of sect. Quercus. Application of different cut-off thresholds revealed that medium- to high-abundance (>10 or 25) sequences suffice for a net species identification of samples containing one or a few individuals. Lower thresholds identify phylogenetic correspondence with all target species in highly mixed samples (analogous to environmental bulk samples) and include rare variants pointing towards reticulation, incomplete lineage sorting, pseudogenic 5S units and in situ (natural) contamination. Our pipeline is highly promising for future assessments of intraspecific and interpopulation diversity, and of the genetic resources of natural ecosystems, which are fundamental to empower fast and solid biodiversity conservation programmes worldwide.


Subject(s)
Genome, Plant , Quercus , Algorithms , Ecosystem , High-Throughput Nucleotide Sequencing , Phylogeny , Pilot Projects , Quercus/genetics , Sequence Analysis, DNA
8.
PLoS One ; 15(11): e0242280, 2020.
Article in English | MEDLINE | ID: mdl-33201911

ABSTRACT

Species distribution models can help predicting range shifts under climate change. The aim of this study is to investigate the late Quaternary distribution of Oriental beech (Fagus orientalis) and to project future distribution ranges under different climate change scenarios using a combined palaeobotanical, phylogeographic, and modelling approach. Five species distribution modelling algorithms under the R-package `biomod2`were applied to occurrence data of Fagus orientalis to predict distributions under present, past (Last Glacial Maximum, 21 ka, Mid-Holocene, 6 ka), and future climatic conditions with different scenarios obtained from MIROC-ESM and CCSM4 global climate models. Distribution models were compared to palaeobotanical and phylogeographic evidence. Pollen data indicate northern Turkey and the western Caucasus as refugia for Oriental beech during the Last Glacial Maximum. Although pollen records are missing, molecular data point to Last Glacial Maximum refugia in northern Iran. For the mid-Holocene, pollen data support the presence of beech in the study region. Species distribution models predicted present and Last Glacial Maximum distribution of Fagus orientalis moderately well yet underestimated mid-Holocene ranges. Future projections under various climate scenarios indicate northern Iran and the Caucasus region as major refugia for Oriental beech. Combining palaeobotanical, phylogeographic and modelling approaches is useful when making projections about distributions of plants. Palaeobotanical and molecular evidence reject some of the model projections. Nevertheless, the projected range reduction in the Caucasus region and northern Iran highlights their importance as long-term refugia, possibly related to higher humidity, stronger environmental and climatic heterogeneity and strong vertical zonation of the forest vegetation.


Subject(s)
Climate Change , Fagus/growth & development , Algorithms , Fagus/physiology , Fossils , Iran , Phylogeography , Pollen , Refugium , Turkey
9.
R Soc Open Sci ; 7(5): 192067, 2020 May.
Article in English | MEDLINE | ID: mdl-32537204

ABSTRACT

The late Miocene is marked by pronounced environmental changes and the appearance of strong temperature and precipitation seasonality. Although environmental heterogeneity is to be expected during this time, it is challenging to reconstruct palaeoenvironments using plant fossils. We investigated leaves and dispersed spores/pollen from 6.4 to 6 Ma strata in the intermontane Florina-Ptolemais-Servia Basin (FPS) of northwestern Greece. To assess how well plant fossils reflect the actual vegetation of the FPS, we assigned fossil taxa to biomes providing a measure for environmental heterogeneity. Additionally, the palynological assemblage was compared with pollen spectra from modern lake sediments to assess biases in spore/pollen representation in the pollen record. We found a close match of the Vegora assemblage with modern Fagus-Abies forests of Turkey. Using taxonomic affinities of leaf fossils, we further established close similarities of the Vegora assemblage with modern laurophyllous oak forests of Afghanistan. Finally, using information from sedimentary environment and taphonomy, we distinguished local and distantly growing vegetation types. We then subjected the plant assemblage of Vegora to different methods of climate reconstruction and discussed their potentials and limitations. Leaf and spore/pollen records allow accurate reconstructions of palaeoenvironments in the FPS, whereas extra-regional vegetation from coastal lowlands is probably not captured.

10.
New Phytol ; 226(4): 1198-1212, 2020 05.
Article in English | MEDLINE | ID: mdl-31609470

ABSTRACT

The tree of life is highly reticulate, with the history of population divergence emerging from populations of gene phylogenies that reflect histories of introgression, lineage sorting and divergence. In this study, we investigate global patterns of oak diversity and test the hypothesis that there are regions of the oak genome that are broadly informative about phylogeny. We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632 individuals representing nearly 250 Quercus species to infer a time-calibrated phylogeny of the world's oaks. We use a reversible-jump Markov chain Monte Carlo method to reconstruct shifts in lineage diversification rates, accounting for among-clade sampling biases. We then map the > 20 000 RAD-seq loci back to an annotated oak genome and investigate genomic distribution of introgression and phylogenetic support across the phylogeny. Oak lineages have diversified among geographic regions, followed by ecological divergence within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four clades that experienced increases in net diversification, probably in response to climatic transitions or ecological opportunity. The strong support for the phylogeny contrasts with high genomic heterogeneity in phylogenetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may in fact depend on the gene flow that shapes the oak genome.


Subject(s)
Quercus , Gene Flow , Genomics , Phylogeny , Quercus/genetics , Sequence Analysis, DNA
11.
Science ; 366(6467)2019 11 15.
Article in English | MEDLINE | ID: mdl-31727801

ABSTRACT

Wilf et al (Research Articles, 7 June 2019, eaaw5139) claim that Castanopsis evolved in the Southern Hemisphere from where it spread to its modern distribution in Southeast Asia. However, extensive paleobotanical records of Antarctica and Australia lack evidence of any Fagaceae, and molecular patterns indicate shared biogeographic histories of Castanopsis, Castanea, Lithocarpus, and Quercus subgenus Cerris, making the southern route unlikely.


Subject(s)
Quercus , Rainforest , Antarctic Regions , Australia
12.
Am J Bot ; 105(12): 2025-2036, 2018 12.
Article in English | MEDLINE | ID: mdl-30548995

ABSTRACT

PREMISE OF THE STUDY: The Eocene Baltic amber deposit represents the largest accumulation of fossil resin worldwide, and hundreds of thousands of entrapped arthropods have been recovered. Although Baltic amber preserves delicate plant structures in high fidelity, angiosperms of the "Baltic amber forest" remain poorly studied. We describe a pistillate partial inflorescence of Castanopsis (Fagaceae), expanding the knowledge of Fagaceae diversity from Baltic amber. METHODS: The amber specimen was investigated using light microscopy and synchrotron-radiation-based X-ray micro-computed tomography (SRµCT). KEY RESULTS: The partial inflorescence is a cymule, consisting of an involucre of scales that surround all four pistillate flowers, indicating a dichasium cupule. Subtending bracts are basally covered with peltate trichomes. Flowers possess an urecolate perianth of six nearly free lobes, 12 staminodia hidden by the perianth, and a tri-locular ovary that is convex-triangular in cross section. The exceptional three-dimensional preservation suggests that the fossil belongs to the extant East Asian genus Castanopsis. The amber inclusion represents the first record of Castanopsis from Baltic amber and the first pistillate inflorescence of Fagaceae from Eurasia. CONCLUSIONS: The partial female inflorescence reported here provides an important addition to acorns of Castanopsis described from middle Eocene strata of Europe. Furthermore, the intercontinental distribution of Castanopsis in the Eocene is confirmed. The amber fossil also broadens the picture of the Baltic amber source area, indicating oligotrophic, sandy, bog-like habitats. Finally, this study underscores the great benefit of SRµCT as a powerful tool to investigate plant inclusions from amber in a nondestructive way.


Subject(s)
Fagaceae/anatomy & histology , Fossils/anatomy & histology , Inflorescence/anatomy & histology , Fossils/diagnostic imaging , Synchrotrons , X-Ray Microtomography
13.
Nat Ecol Evol ; 2(12): 1864-1870, 2018 12.
Article in English | MEDLINE | ID: mdl-30374173

ABSTRACT

Reconstruction of palaeobiomes, ancient communities that exhibit a physiognomic and functional structure controlled by their environment, depends on proxies from different disciplines. Based on terrestrial mammal fossils, the late Miocene vegetation from China to the eastern Mediterranean and East Africa has been reconstructed as a single cohesive biome with increasingly arid conditions, with modern African savannahs the surviving remnant. Here, we test this reconstruction using plant fossils spanning 14-4 million years ago from sites in Greece, Bulgaria, Turkey, the Tian Shan Mountains and Baode County in China, and East Africa. The western Eurasian sites had a continuous forest cover of deciduous or evergreen angiosperms and gymnosperms, with 15% of 1,602 fossil occurrences representing conifers, which were present at all but one of the sites. Raup-Crick analyses reveal high floristic similarity between coeval eastern Mediterranean and Chinese sites, and low similarity between Eurasian and African sites. The disagreement between plant-based reconstructions, which imply that late Miocene western Eurasia was covered by evergreen needleleaf forests and mixed forests, and mammal-based reconstructions, which imply a savannah biome, throws into doubt the approach of inferring Miocene precipitation and open savannah habitats solely from mammalian dental traits. Organismal communities are constantly changing in their species composition, and neither animal nor plant traits by themselves are sufficient to infer entire ancient biomes. The plant fossil record, however, unambiguously rejects the existence of a cohesive savannah biome from eastern Asia to northeast Africa.


Subject(s)
Ecosystem , Plant Dispersal , Africa, Eastern , Animals , China , Fossils , Grassland , Mammals , Mediterranean Region , Plants/classification
14.
PeerJ ; 6: e5793, 2018.
Article in English | MEDLINE | ID: mdl-30356975

ABSTRACT

Oaks (Quercus) comprise more than 400 species worldwide and centres of diversity for most sections lie in the Americas and East/Southeast Asia. The only exception is the Eurasian sect. Cerris that comprises about 15 species, most of which are confined to western Eurasia. This section has not been comprehensively studied using molecular tools. Here, we assess species diversity and provide a first comprehensive taxonomic and phylogeographic scheme of western Eurasian members of sect. Cerris using plastid (trnH-psbA) and nuclear (5S-IGS) DNA variation with a dense intra-specific and geographic sampling. Chloroplast haplotypes primarily reflected phylogeographic patterns originating from interspecific cytoplasmic gene flow within sect. Cerris and its sister section Ilex. We identified two widespread and ancestral haplotypes, and locally restricted derived variants. Signatures shared with Mediterranean species of sect. Ilex, but not with the East Asian Cerris oaks, suggest that the western Eurasian lineage came into contact with Ilex only after the first (early Oligocene) members of sect. Cerris in Northeast Asia had begun to radiate and move westwards. Nuclear 5S-IGS diversification patterns were more useful for establishing a molecular-taxonomic framework and to reveal hybridization and reticulation. Four main evolutionary lineages were identified. The first lineage is comprised of Q. libani, Q. trojana and Q. afares and appears to be closest to the root of sect. Cerris. These taxa are morphologically most similar to the East Asian species of Cerris, and to both Oligocene and Miocene fossils of East Asia and Miocene fossils of western Eurasia. The second lineage is mainly composed of the widespread Q. cerris and the narrow endemic species Q. castaneifolia, Q. look, and Q. euboica. The third lineage comprises three Near East species (Q. brantii, Q. ithaburensis and Q. macrolepis), well adapted to continental climates with cold winters. The forth lineage appears to be the most derived and comprises Q. suber and Q. crenata. Q. cerris and Q.  trojana displayed high levels of variation; Q. macrolepis and Q. euboica, previously treated as subspecies of Q. ithaburensis and Q. trojana, likely deserve independent species status. A trend towards inter-specific crosses was detected in several taxa; however, we found no clear evidence of a hybrid origin of Q. afares and Q. crenata, as currently assumed.

15.
Article in English | MEDLINE | ID: mdl-27325832

ABSTRACT

The fossilized birth-death (FBD) model can make use of information contained in multiple fossils representing the same clade, and we here apply this model to infer divergence times in beeches (genus Fagus), using 53 fossils and nuclear sequences for all nine species. We also apply FBD dating to the fern clade Osmundaceae, with about 12 living species and 36 fossils. Fagus nuclear sequences cannot be aligned with those of other Fagaceae, and we therefore use Bayes factors to choose among alternative root positions. The crown group of Fagus is dated to 53 (62-43) Ma; divergence of the sole American species to 44 (51-39) Ma and divergence between Central European F. sylvatica and Eastern Mediterranean F. orientalis to 8.7 (20-1.8) Ma, unexpectedly old. The FBD model can accommodate fossils as sampled ancestors or as extinct or unobserved lineages; however, this makes its raw output, which shows all fossils on short or long branches, problematic to interpret. We use hand-drawn depictions and a bipartition network to illustrate the uncertain placements of fossils. Inferred speciation and extinction rates imply approximately 5× higher evolutionary turnover in Fagus than in Osmundaceae, fitting a hypothesized low turnover in plants adapted to low-nutrient conditions.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.


Subject(s)
Fagus/physiology , Ferns/physiology , Fossils/anatomy & histology , Genetic Speciation , Phylogeny , Biological Evolution , Evolution, Molecular , Models, Biological , Plant Proteins/genetics , Sequence Analysis, DNA
16.
PeerJ ; 4: e1897, 2016.
Article in English | MEDLINE | ID: mdl-27123376

ABSTRACT

Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not leave imprints in the nuclear genome of modern species and infrageneric lineages.

17.
Am J Bot ; 102(3): 423-38, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25784476

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: Recent molecular studies provide a phylogenetic framework and some dated nodes for the monocot genus Smilax. The Caribbean Havanensis group of Smilax is part of a well-supported "New World clade" with a few disjunct taxa in the Old World. Although the fossil record of the genus is rich, it has been difficult to assign fossil taxa to extant groups based on their preserved morphological characters.• METHODS: Leaf fossils from Europe and Asia Minor were studied comparatively and put into a phylogenetic and biogeographic context using a molecular phylogeny of the genus.• KEY RESULTS: Fossils from the early Miocene of Anatolia represent a new species of Smilax with systematic affinities with the Havanensis group. The leaf type encountered in the fossil species is exclusively found in species of the Havanensis group among all modern Smilax. Scattered fossils of this type from the Miocene of Greece and Austria, previously referred to Quercus (Fagaceae), Ilex (Aquifoliaceae), and Mahonia (Berberidaceae) also belong to the new species.• CONCLUSIONS: The new Smilax provides first fossil evidence of the Havanensis group and proves that this group had a western Eurasian distribution during the Miocene. The age of the fossils is in good agreement with the (molecular-based) purported split between the Havanensis and Hispida groups within Smilax. The Miocene Smilax provides evidence that all four subclades within the "New World clade" had a disjunct intercontinental distribution during parts of the Neogene involving trans-Atlantic crossings (via floating islands or the North Atlantic land bridge) and the Beringia land bridge.


Subject(s)
Biological Evolution , Fossils , Plant Dispersal , Smilax/classification , Europe , Phylogeny , Smilax/anatomy & histology , Turkey
18.
Plant Syst Evol ; 301: 809-832, 2015.
Article in English | MEDLINE | ID: mdl-25620836

ABSTRACT

In this paper we document Fagaceae pollen from the Eocene of western Greenland. The pollen record suggests a remarkable diversity of the family in the early Cenozoic of Greenland. Extinct Fagaceae pollen types include Eotrigonobalanus, which extends at least back to the Paleocene, and two ancestral pollen types with affinities to the Eurasian Quercus Group Ilex and the western North American Quercus Group Protobalanus. In addition, modern lineages of Fagaceae are unambiguously represented by pollen of Fagus, Quercus Group Lobatae/Quercus, and three Castaneoideae pollen types. These findings corroborate earlier findings from Axel Heiberg Island that Fagaceae were a dominant element at high latitudes during the early Cenozoic. Comparison with coeval or older mid-latitude records of modern lineages of Fagaceae shows that modern lineages found in western Greenland and Axel Heiberg likely originated at lower latitudes. Further examples comprise (possibly) Acer, Aesculus, Alnus, Ulmus, and others. Thus, before fossils belonging to modern northern temperate lineages will have been recovered from older (early Eocene, Paleocene) strata from high latitudes, Engler's hypothesis of an Arctic origin of the modern temperate woody flora of Eurasia, termed 'Arcto-Tertiary Element', and later modification by R. W. Chaney and H. D. Mai ('Arcto-Tertiary Geoflora') needs to be modified.

19.
Am J Bot ; 101(8): 1332-49, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25156982

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: The early Cenozoic was a key period of evolutionary radiation in Fagaceae. The common notion is that species thriving in the modern summer-dry climate of California originated in climates with ample summer rain during the Paleogene.• METHODS: We investigated in situ and dispersed pollen of Fagaceae from the uppermost Eocene Florissant fossil beds, Colorado, United States, using a combined light and scanning electron microscopy approach.• KEY RESULTS: Pollen types of Castaneoideae with affinities to modern Castanea, Lithocarpus, and Castanopsis were recognized. Pollen of the extinct genus Fagopsis represents a derived type of Castaneoideae pollen. Infrageneric groups of Quercus were well represented, including pollen of Group Protobalanus. The taxonomic diversity of Fagaceae and of the total plant assemblage indicates a mosaic of microclimates, that range from pronounced to weakly seasonal climates and depend on slope aspect and elevation. Continental climatic conditions may have triggered the evolution of sclerophyllous leaves and adaptive radiation in Quercus and other taxa thriving today under distinctly summer-dry and winter-dry climates.• CONCLUSIONS: Vegetation types similar to modern vegetation belts of the Coastal Ranges (chaparral, nemoral conifer forest) were established in the Front Range in the late Eocene. Coeval plant assemblages from the Coastal Ranges of California indicate distinctly subtropical, moist climates. Hence, characteristic elements found today in the summer-dry and winter-dry climates of Pacific North America (Quercus Group Protobalanus, Notholithocarpus) may opportunistically have dispersed into their modern ranges later in the Cenozoic. This scenario is in contrast to the evolution and migration patterns of their western Eurasian Mediterranean counterparts (Quercus Group Ilex).


Subject(s)
Biological Evolution , Climate , Fagaceae , Phylogeny , Plant Leaves , Pollen , Rain , Adaptation, Physiological , California , Ecology , Fossils , Plant Dispersal , Quercus , Water
20.
Am J Bot ; 97(2): 276-87, 2010 Feb.
Article in English | MEDLINE | ID: mdl-21622388

ABSTRACT

Dating the subsidence history of the North Atlantic Land Bridge (NALB) is crucial for understanding intercontinental disjunctions of northern temperate trees. Traditionally, the NALB has been assumed to have functioned as a corridor for plant migration only during the early Cenozoic, but recent findings of plant fossils and inferences from molecular studies are challenging this view. Here, we report dispersed pollen of Quercus from Late Miocene sediments in Iceland that shows affinities with extant northern hemispheric white oaks and North American red oaks. Older (15 to 10 Ma) sediments do not contain pollen of Quercus suggesting it arrived after that time. Pollen from the 9-8 Ma Hrútagil locality is indistinguishable from morphotypes common among white and red oaks. In contrast, pollen from the 5.5 Ma Selárgil locality has a tectum that is at present confined to North American white and red oaks, indicating a second episode of migration to Iceland. These findings suggest that transatlantic migration of temperate plant taxa may not have been limited by vast areas of sea or by cold climates during the Miocene. Furthermore, our results offer a plausible explanation for the remarkably low degree of genetic differentiation between modern disjunct European and North American oaks.

SELECTION OF CITATIONS
SEARCH DETAIL
...