Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Prog Phys ; 85(12)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36179676

ABSTRACT

Actinide-based compounds exhibit unique physics due to the presence of 5f electrons, and serve in many cases as important technological materials. Targeted thin film synthesis of actinide materials has been successful in generating high-purity specimens in which to study individual physical phenomena. These films have enabled the study of the unique electron configuration, strong mass renormalization, and nuclear decay in actinide metals and compounds. The growth of these films, as well as their thermophysical, magnetic, and topological properties, have been studied in a range of chemistries, albeit far fewer than most classes of thin film systems. This relative scarcity is the result of limited source material availability and safety constraints associated with the handling of radioactive materials. Here, we review recent work on the synthesis and characterization of actinide-based thin films in detail, describing both synthesis methods and modeling techniques for these materials. We review reports on pyrometallurgical, solution-based, and vapor deposition methods. We highlight the current state-of-the-art in order to construct a path forward to higher quality actinide thin films and heterostructure devices.

3.
Phys Chem Chem Phys ; 24(10): 6133-6145, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35225299

ABSTRACT

We have utilized photoluminescence spectroscopy and optical ellipsometry to characterize the dose-dependence of the photoluminescence emission intensity and changes in optical absorption of thoria single crystals subject to irradiation with energetic protons at room- and elevated-temperatures. The photoluminescence peaks and the optical absorption bands are attributed to creation of new electronic states emerging from defects resulting from displacement damage. These bands are most likely associated with electrons trapped at the oxygen vacancy sites similar to color centers formed in other irradiated oxides and halides. Our experimental observations are supported by a standard density functional theory calculation of the electronic structure in pristine and oxygen vacancy-bearing thoria crystals. The dose-dependence of the intensity of the photoluminescence peaks is used to parameterize a rate theory model that estimates the concentration of color centers in the irradiated crystals. This parameterization provides optimized migration barrier parameters for oxygen interstitials and vacancies that simultaneously capture the optical response of the crystals irradiated at room- and elevated-temperature. These optical spectroscopy techniques offer a promising pathway to characterize the population of color centers formed at the sites of oxygen anion vacancies, particularly in irradiated nuclear fuels, where atomic-level defects cannot be readily imaged using electron microscopy. When combined with other direct and indirect characterization tools, our approach can provide new insight into defect formation and accumulation in energy materials over single atomic to extended length scales.

4.
Chem Rev ; 122(3): 3711-3762, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-34919381

ABSTRACT

To efficiently capture the energy of the nuclear bond, advanced nuclear reactor concepts seek solid fuels that must withstand unprecedented temperature and radiation extremes. In these advanced fuels, thermal energy transport under irradiation is directly related to reactor performance as well as reactor safety. The science of thermal transport in nuclear fuel is a grand challenge as a result of both computational and experimental complexities. Here we provide a comprehensive review of thermal transport research on two actinide oxides: one currently in use in commercial nuclear reactors, uranium dioxide (UO2), and one advanced fuel candidate material, thorium dioxide (ThO2). In both materials, heat is carried by lattice waves or phonons. Crystalline defects caused by fission events effectively scatter phonons and lead to a degradation in fuel performance over time. Bolstered by new computational and experimental tools, researchers are now developing the foundational work necessary to accurately model and ultimately control thermal transport in advanced nuclear fuels. We begin by reviewing research aimed at understanding thermal transport in perfect single crystals. The absence of defects enables studies that focus on the fundamental aspects of phonon transport. Next, we review research that targets defect generation and evolution. Here the focus is on ion irradiation studies used as surrogates for damage caused by fission products. We end this review with a discussion of modeling and experimental efforts directed at predicting and validating mesoscale thermal transport in the presence of irradiation defects. While efforts in these research areas have been robust, challenging work remains in developing holistic tools to capture and predict thermal energy transport across widely varying environmental conditions.

5.
Rev Sci Instrum ; 91(5): 054902, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32486729

ABSTRACT

We present new developments of the laser-induced transient grating spectroscopy (TGS) technique that enable the measurement of large area 2D maps of thermal diffusivity and surface acoustic wave speed. Additional capabilities include targeted measurements and the ability to accommodate samples with increased surface roughness. These new capabilities are demonstrated by recording large TGS maps of deuterium implanted tungsten, linear friction welded aerospace alloys, and high entropy alloys with a range of grain sizes. The results illustrate the ability to view the grain microstructure in elastically anisotropic samples and to detect anomalies in samples, for example, due to irradiation and previous measurements. They also point to the possibility of using TGS to quantify grain size at the surface of polycrystalline materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...