Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Lancet Oncol ; 25(3): 338-351, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423048

ABSTRACT

BACKGROUND: There are few data on international variation in chemotherapy use, despite it being a key treatment type for some patients with cancer. Here, we aimed to examine the presence and size of such variation. METHODS: This population-based study used data from Norway, the four UK nations (England, Northern Ireland, Scotland, and Wales), eight Canadian provinces (Alberta, British Columbia, Manitoba, Newfoundland and Labrador, Nova Scotia, Ontario, Prince Edward Island, and Saskatchewan), and two Australian states (New South Wales and Victoria). Patients aged 15-99 years diagnosed with cancer in eight different sites (oesophageal, stomach, colon, rectal, liver, pancreatic, lung, or ovarian cancer), with no other primary cancer diagnosis occurring from within the 5 years before to 1 year after the index cancer diagnosis or during the study period were included in the study. We examined variation in chemotherapy use from 31 days before to 365 days after diagnosis and time to its initiation, alongside related variation in patient group differences. Information was obtained from cancer registry records linked to clinical or patient management system data or hospital administration data. Random-effects meta-analyses quantified interjurisdictional variation using 95% prediction intervals (95% PIs). FINDINGS: Between Jan 1, 2012, and Dec 31, 2017, of 893 461 patients with a new diagnosis of one of the studied cancers, 111 569 (12·5%) did not meet the inclusion criteria, and 781 892 were included in the analysis. There was large interjurisdictional variation in chemotherapy use for all studied cancers, with wide 95% PIs: 47·5 to 81·2 (pooled estimate 66·4%) for ovarian cancer, 34·9 to 59·8 (47·2%) for oesophageal cancer, 22·3 to 62·3 (40·8%) for rectal cancer, 25·7 to 55·5 (39·6%) for stomach cancer, 17·2 to 56·3 (34·1%) for pancreatic cancer, 17·9 to 49·0 (31·4%) for lung cancer, 18·6 to 43·8 (29·7%) for colon cancer, and 3·5 to 50·7 (16·1%) for liver cancer. For patients with stage 3 colon cancer, the interjurisdictional variation was greater than that for all patients with colon cancer (95% PI 38·5 to 78·4; 60·1%). Patients aged 85-99 years had 20-times lower odds of chemotherapy use than those aged 65-74 years, with very large interjurisdictional variation in this age difference (odds ratio 0·05; 95% PI 0·01 to 0·19). There was large variation in median time to first chemotherapy (from diagnosis date) by cancer site, with substantial interjurisdictional variation, particularly for rectal cancer (95% PI -15·5 to 193·9 days; pooled estimate 89·2 days). Patients aged 85-99 years had slightly shorter median time to first chemotherapy compared with those aged 65-74 years, consistently between jurisdictions (-3·7 days, 95% PI -7·6 to 0·1). INTERPRETATION: Large variation in use and time to chemotherapy initiation were observed between the participating jurisdictions, alongside large and variable age group differences in chemotherapy use. To guide efforts to improve patient outcomes, the underlying reasons for these patterns need to be established. FUNDING: International Cancer Benchmarking Partnership (funded by the Canadian Partnership Against Cancer, Cancer Council Victoria, Cancer Institute New South Wales, Cancer Research UK, Danish Cancer Society, National Cancer Registry Ireland, The Cancer Society of New Zealand, National Health Service England, Norwegian Cancer Society, Public Health Agency Northern Ireland on behalf of the Northern Ireland Cancer Registry, DG Health and Social Care Scottish Government, Western Australia Department of Health, and Public Health Wales NHS Trust).


Subject(s)
Colonic Neoplasms , Ovarian Neoplasms , Rectal Neoplasms , Female , Humans , Benchmarking , Colonic Neoplasms/drug therapy , Colonic Neoplasms/epidemiology , Liver , Lung , Ontario/epidemiology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/epidemiology , State Medicine , Stomach , Victoria , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Male
2.
Lancet Oncol ; 25(3): 352-365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423049

ABSTRACT

BACKGROUND: There is little evidence on variation in radiotherapy use in different countries, although it is a key treatment modality for some patients with cancer. Here we aimed to examine such variation. METHODS: This population-based study used data from Norway, the four UK nations (England, Northern Ireland, Scotland, and Wales), nine Canadian provinces (Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, Ontario, Prince Edward Island, and Saskatchewan), and two Australian states (New South Wales and Victoria). Patients aged 15-99 years diagnosed with cancer in eight different sites (oesophageal, stomach, colon, rectal, liver, pancreatic, lung, or ovarian cancer), with no other primary cancer diagnosis occurring within the 5 years before to 1 year after the index cancer diagnosis or during the study period were included in the study. We examined variation in radiotherapy use from 31 days before to 365 days after diagnosis and time to its initiation, alongside related variation in patient group differences. Information was obtained from cancer registry records linked to clinical or patient management system data, or hospital administration data. Random-effects meta-analyses quantified interjurisdictional variation using 95% prediction intervals (95% PIs). FINDINGS: Between Jan 1, 2012, and Dec 31, 2017, of 902 312 patients with a new diagnosis of one of the studied cancers, 115 357 (12·8%) did not meet inclusion criteria, and 786,955 were included in the analysis. There was large interjurisdictional variation in radiotherapy use, with wide 95% PIs: 17·8 to 82·4 (pooled estimate 50·2%) for oesophageal cancer, 35·5 to 55·2 (45·2%) for rectal cancer, 28·6 to 54·0 (40·6%) for lung cancer, and 4·6 to 53·6 (19·0%) for stomach cancer. For patients with stage 2-3 rectal cancer, interjurisdictional variation was greater than that for all patients with rectal cancer (95% PI 37·0 to 84·6; pooled estimate 64·2%). Radiotherapy use was infrequent but variable in patients with pancreatic (95% PI 1·7 to 16·5%), liver (1·8 to 11·2%), colon (1·6 to 5·0%), and ovarian (0·8 to 7·6%) cancer. Patients aged 85-99 years had three-times lower odds of radiotherapy use than those aged 65-74 years, with substantial interjurisdictional variation in this age difference (odds ratio [OR] 0·38; 95% PI 0·20-0·73). Women had slightly lower odds of radiotherapy use than men (OR 0·88, 95% PI 0·77-1·01). There was large variation in median time to first radiotherapy (from diagnosis date) by cancer site, with substantial interjurisdictional variation (eg, oesophageal 95% PI 11·3 days to 112·8 days; pooled estimate 62·0 days; rectal 95% PI 34·7 days to 77·3 days; pooled estimate 56·0 days). Older patients had shorter median time to radiotherapy with appreciable interjurisdictional variation (-9·5 days in patients aged 85-99 years vs 65-74 years, 95% PI -26·4 to 7·4). INTERPRETATION: Large interjurisdictional variation in both use and time to radiotherapy initiation were observed, alongside large and variable age differences. To guide efforts to improve patient outcomes, underlying reasons for these differences need to be established. FUNDING: International Cancer Benchmarking Partnership (funded by the Canadian Partnership Against Cancer, Cancer Council Victoria, Cancer Institute New South Wales, Cancer Research UK, Danish Cancer Society, National Cancer Registry Ireland, The Cancer Society of New Zealand, National Health Service England, Norwegian Cancer Society, Public Health Agency Northern Ireland on behalf of the Northern Ireland Cancer Registry, DG Health and Social Care Scottish Government, Western Australia Department of Health, and Public Health Wales NHS Trust).


Subject(s)
Ovarian Neoplasms , Rectal Neoplasms , Female , Humans , Male , Benchmarking , Colon , Liver , Lung , Ontario/epidemiology , State Medicine , Stomach , Victoria , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over
3.
Nat Commun ; 14(1): 5275, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644002

ABSTRACT

Understanding the impact of SARS-CoV-2 infection and COVID-19 vaccination in pregnancy on neonatal and maternal outcomes informs clinical decision-making. Here we report a national, population-based, matched cohort study to investigate associations between SARS-CoV-2 infection and, separately, COVID-19 vaccination just before or during pregnancy and the risk of adverse neonatal and maternal outcomes among women in Scotland with a singleton pregnancy ending at ≥20 weeks gestation. Neonatal outcomes are stillbirth, neonatal death, extended perinatal mortality, preterm birth (overall, spontaneous, and provider-initiated), small-for-gestational age, and low Apgar score. Maternal outcomes are admission to critical care or death, venous thromboembolism, hypertensive disorders of pregnancy, and pregnancy-related bleeding. We use conditional logistic regression to derive odds ratios adjusted for socio-demographic and clinical characteristics (aORs). We find that infection is associated with an increased risk of preterm (aOR=1.36, 95% Confidence Interval [CI] = 1.16-1.59) and very preterm birth (aOR = 1.90, 95% CI 1.20-3.02), maternal admission to critical care or death (aOR=1.72, 95% CI = 1.39-2.12), and venous thromboembolism (aOR = 2.53, 95% CI = 1.47-4.35). We find no evidence of increased risk for any of our outcomes following vaccination. These data suggest SARS-CoV-2 infection during pregnancy is associated with adverse neonatal and maternal outcomes, and COVID-19 vaccination remains a safe way for pregnant women to protect themselves and their babies against infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Pregnancy Complications, Infectious , Pregnancy Outcome , Adult , Female , Humans , Infant, Newborn , Pregnancy , Cohort Studies , COVID-19/pathology , COVID-19 Vaccines/adverse effects , Pregnancy Complications, Infectious/pathology
4.
Arch Dis Child Fetal Neonatal Ed ; 108(4): 367-372, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36609412

ABSTRACT

OBJECTIVES: To examine neonates in Scotland aged 0-27 days with SARS-CoV-2 infection confirmed by viral testing; the risk of confirmed neonatal infection by maternal and infant characteristics; and hospital admissions associated with confirmed neonatal infections. DESIGN: Population-based cohort study. SETTING AND POPULATION: All live births in Scotland, 1 March 2020-31 January 2022. RESULTS: There were 141 neonates with confirmed SARS-CoV-2 infection over the study period, giving an overall infection rate of 153 per 100 000 live births (141/92 009, 0.15%). Among infants born to women with confirmed infection around the time of birth, the confirmed neonatal infection rate was 1812 per 100 000 live births (15/828, 1.8%). Two-thirds (92/141, 65.2%) of neonates with confirmed infection had an associated admission to neonatal or (more commonly) paediatric care. Six of these babies (6/92, 6.5%) were admitted to neonatal and/or paediatric intensive care; however, none of these six had COVID-19 recorded as their main diagnosis. There were no neonatal deaths among babies with confirmed infection. IMPLICATIONS AND RELEVANCE: Confirmed neonatal SARS-CoV-2 infection was uncommon over the first 23 months of the pandemic in Scotland. Secular trends in the neonatal confirmed infection rate broadly followed those seen in the general population, although at a lower level. Maternal confirmed infection at birth was associated with an increased risk of neonatal confirmed infection. Two-thirds of neonates with confirmed infection had an associated admission to hospital, with resulting implications for the baby, family and services, although their outcomes were generally good. Ascertainment of confirmed infection depends on the extent of testing, and this is likely to have varied over time and between groups: the extent of unconfirmed infection is inevitably unknown.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Infant , Child , Humans , Female , COVID-19/diagnosis , COVID-19/epidemiology , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/diagnosis , SARS-CoV-2 , Cohort Studies , Scotland/epidemiology , Pregnancy Outcome/epidemiology
5.
Nat Commun ; 14(1): 107, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36609574

ABSTRACT

Evidence on associations between COVID-19 vaccination or SARS-CoV-2 infection and the risk of congenital anomalies is limited. Here we report a national, population-based, matched cohort study using linked electronic health records from Scotland (May 2020-April 2022) to estimate the association between COVID-19 vaccination and, separately, SARS-CoV-2 infection between six weeks pre-conception and 19 weeks and six days gestation and the risk of [1] any major congenital anomaly and [2] any non-genetic major congenital anomaly. Mothers vaccinated in this pregnancy exposure period mostly received an mRNA vaccine (73.7% Pfizer-BioNTech BNT162b2 and 7.9% Moderna mRNA-1273). Of the 6731 babies whose mothers were vaccinated in the pregnancy exposure period, 153 had any anomaly and 120 had a non-genetic anomaly. Primary analyses find no association between any vaccination and any anomaly (adjusted Odds Ratio [aOR] = 1.01, 95% Confidence Interval [CI] = 0.83-1.24) or non-genetic anomalies (aOR = 1.00, 95% CI = 0.81-1.22). Primary analyses also find no association between SARS-CoV-2 infection and any anomaly (aOR = 1.02, 95% CI = 0.66-1.60) or non-genetic anomalies (aOR = 0.94, 95% CI = 0.57-1.54). Findings are robust to sensitivity analyses. These data provide reassurance on the safety of vaccination, in particular mRNA vaccines, just before or in early pregnancy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Female , Humans , Pregnancy , BNT162 Vaccine , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , SARS-CoV-2/genetics , Vaccination/adverse effects
6.
Nat Commun ; 13(1): 6124, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253471

ABSTRACT

Data on the safety of COVID-19 vaccines in early pregnancy are limited. We conducted a national, population-based, matched cohort study assessing associations between COVID-19 vaccination and miscarriage prior to 20 weeks gestation and, separately, ectopic pregnancy. We identified women in Scotland vaccinated between 6 weeks preconception and 19 weeks 6 days gestation (for miscarriage; n = 18,780) or 2 weeks 6 days gestation (for ectopic; n = 10,570). Matched, unvaccinated women from the pre-pandemic and, separately, pandemic periods were used as controls. Here we show no association between vaccination and miscarriage (adjusted Odds Ratio [aOR], pre-pandemic controls = 1.02, 95% Confidence Interval [CI] = 0.96-1.09) or ectopic pregnancy (aOR = 1.13, 95% CI = 0.92-1.38). We undertook additional analyses examining confirmed SARS-CoV-2 infection as the exposure and similarly found no association with miscarriage or ectopic pregnancy. Our findings support current recommendations that vaccination remains the safest way for pregnant women to protect themselves and their babies from COVID-19.


Subject(s)
Abortion, Spontaneous , COVID-19 Vaccines , COVID-19 , Influenza, Human , Pregnancy, Ectopic , Female , Humans , Pregnancy , Abortion, Spontaneous/epidemiology , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Influenza, Human/prevention & control , Pregnancy Outcome , SARS-CoV-2 , Vaccination
7.
Lancet Respir Med ; 10(12): 1129-1136, 2022 12.
Article in English | MEDLINE | ID: mdl-36216011

ABSTRACT

BACKGROUND: Evidence suggests that the SARS-CoV-2 omicron (B.1·1.529) is associated with lower risks of adverse outcomes than the delta (B.1.617.2) variant among the general population. However, little is known about outcomes after omicron infection in pregnancy. We aimed to assess and compare short-term pregnancy outcomes after SARS-CoV-2 delta and omicron infection in pregnancy. METHODS: We did a national population-based cohort study of women who had SARS-CoV-2 infection in pregnancy between May 17, 2021, and Jan 31, 2022. The primary maternal outcome was admission to critical care within 21 days of infection or death within 28 days of date of infection. Pregnancy outcomes were preterm birth and stillbirth within 28 days of infection. Neonatal outcomes were death within 28 days of birth, and low Apgar score (<7 of 10, for babies born at term) or neonatal SARS-CoV-2 infection in births occurring within 28 days of maternal infection. We used periods when variants were dominant in the general Scottish population, based on 50% or more of cases being S-gene positive (delta variant, from May 17 to Dec 14, 2021) or S-gene negative (omicron variant, from Dec 15, 2021, to Jan 31, 2022) as surrogates for variant infections. Analyses used logistic regression, adjusting for maternal age, deprivation quintile, ethnicity, weeks of gestation, and vaccination status. Sensitivity analyses included restricting the analysis to those with first confirmed SARS-CoV-2 infection and using periods when delta or omicron had 90% or more predominance. FINDINGS: Between May 17, 2021, and Jan 31, 2022, there were 9923 SARS-CoV-2 infections in 9823 pregnancies, in 9817 women in Scotland. Compared with infections in the delta-dominant period, SARS-CoV-2 infections in pregnancy in the omicron-dominant period were associated with lower maternal critical care admission risk (0·3% [13 of 4968] vs 1·8% [89 of 4955]; adjusted odds ratio 0·25, 95% CI 0·14-0·44) and lower preterm birth within 28 days of infection (1·8% [37 of 2048] vs 4·2% [98 of 2338]; 0·57, 95% CI 0·38-0·87). There were no maternal deaths within 28 days of infection. Estimates of low Apgar scores were imprecise due to low numbers (5 [1·2%] of 423 with omicron vs 11 [2·1%] of 528 with delta, adjusted odds ratio 0·72, 0·23-2·32). There were fewer stillbirths in the omicron-dominant period than in the delta-dominant period (4·3 [2 of 462] per 1000 births vs 20·3 [13 of 639] per 1000) and no neonatal deaths during the omicron-dominant period (0 [0 of 460] per 1000 births vs 6·3 [4 of 626] per 1000 births), thus numbers were too small to support adjusted analyses. Rates of neonatal infection were low in births within 28 days of maternal SARS-CoV-2 infection, with 11 cases of neonatal SARS-CoV-2 in the delta-dominant period, and 1 case in the omicron-dominant period. Of the 15 stillbirths, 12 occurred in women who had not received two or more doses of COVID-19 vaccination at the time of SARS-CoV-2 infection in pregnancy. All 12 cases of neonatal SARS-CoV-2 infection occurred in women who had not received two or more doses of vaccine at the time of maternal infection. Findings in sensitivity analyses were similar to those in the main analyses. INTERPRETATION: Pregnant women infected with SARS-CoV-2 were substantially less likely to have a preterm birth or maternal critical care admission during the omicron-dominant period than during the delta-dominant period. FUNDING: Wellcome Trust, Tommy's charity, Medical Research Council, UK Research and Innovation, Health Data Research UK, National Core Studies-Data and Connectivity, Public Health Scotland, Scottish Government Health and Social Care, Scottish Government Chief Scientist Office, National Research Scotland.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , SARS-CoV-2 , Pregnancy Outcome/epidemiology , Cohort Studies , Stillbirth/epidemiology , Premature Birth/epidemiology , COVID-19 Vaccines , Pregnancy Complications, Infectious/epidemiology
8.
Lancet Oncol ; 23(5): 587-600, 2022 05.
Article in English | MEDLINE | ID: mdl-35397210

ABSTRACT

BACKGROUND: Greater understanding of international cancer survival differences is needed. We aimed to identify predictors and consequences of cancer diagnosis through emergency presentation in different international jurisdictions in six high-income countries. METHODS: Using a federated analysis model, in this cross-sectional population-based study, we analysed cancer registration and linked hospital admissions data from 14 jurisdictions in six countries (Australia, Canada, Denmark, New Zealand, Norway, and the UK), including patients with primary diagnosis of invasive oesophageal, stomach, colon, rectal, liver, pancreatic, lung, or ovarian cancer during study periods from Jan 1, 2012, to Dec 31, 2017. Data were collected on cancer site, age group, sex, year of diagnosis, and stage at diagnosis. Emergency presentation was defined as diagnosis of cancer within 30 days after an emergency hospital admission. Using logistic regression, we examined variables associated with emergency presentation and associations between emergency presentation and short-term mortality. We meta-analysed estimates across jurisdictions and explored jurisdiction-level associations between cancer survival and the percentage of patients diagnosed as emergencies. FINDINGS: In 857 068 patients across 14 jurisdictions, considering all of the eight cancer sites together, the percentage of diagnoses through emergency presentation ranged from 24·0% (9165 of 38 212 patients) to 42·5% (12 238 of 28 794 patients). There was consistently large variation in the percentage of emergency presentations by cancer site across jurisdictions. Pancreatic cancer diagnoses had the highest percentage of emergency presentations on average overall (46·1% [30 972 of 67 173 patients]), with the jurisdictional range being 34·1% (1083 of 3172 patients) to 60·4% (1317 of 2182 patients). Rectal cancer had the lowest percentage of emergency presentations on average overall (12·1% [10 051 of 83 325 patients]), with a jurisdictional range of 9·1% (403 of 4438 patients) to 19·8% (643 of 3247 patients). Across the jurisdictions, older age (ie, 75-84 years and 85 years or older, compared with younger patients) and advanced stage at diagnosis compared with non-advanced stage were consistently associated with increased emergency presentation risk, with the percentage of emergency presentations being highest in the oldest age group (85 years or older) for 110 (98%) of 112 jurisdiction-cancer site strata, and in the most advanced (distant spread) stage category for 98 (97%) of 101 jurisdiction-cancer site strata with available information. Across the jurisdictions, and despite heterogeneity in association size (I2=93%), emergency presenters consistently had substantially greater risk of 12-month mortality than non-emergency presenters (odds ratio >1·9 for 112 [100%] of 112 jurisdiction-cancer site strata, with the minimum lower bound of the related 95% CIs being 1·26). There were negative associations between jurisdiction-level percentage of emergency presentations and jurisdiction-level 1-year survival for colon, stomach, lung, liver, pancreatic, and ovarian cancer, with a 10% increase in percentage of emergency presentations in a jurisdiction being associated with a decrease in 1-year net survival of between 2·5% (95% CI 0·28-4·7) and 7·0% (1·2-13·0). INTERPRETATION: Internationally, notable proportions of patients with cancer are diagnosed through emergency presentation. Specific types of cancer, older age, and advanced stage at diagnosis are consistently associated with an increased risk of emergency presentation, which strongly predicts worse prognosis and probably contributes to international differences in cancer survival. Monitoring emergency presentations, and identifying and acting on contributing behavioural and health-care factors, is a global priority for cancer control. FUNDING: Canadian Partnership Against Cancer; Cancer Council Victoria; Cancer Institute New South Wales; Cancer Research UK; Danish Cancer Society; National Cancer Registry Ireland; The Cancer Society of New Zealand; National Health Service England; Norwegian Cancer Society; Public Health Agency Northern Ireland, on behalf of the Northern Ireland Cancer Registry; the Scottish Government; Western Australia Department of Health; and Wales Cancer Network.


Subject(s)
Ovarian Neoplasms , Rectal Neoplasms , Aged, 80 and over , Benchmarking , Canada , Cross-Sectional Studies , Female , Hospitals , Humans , Prognosis , Risk Factors , State Medicine , Victoria
11.
Nat Med ; 28(3): 504-512, 2022 03.
Article in English | MEDLINE | ID: mdl-35027756

ABSTRACT

Population-level data on COVID-19 vaccine uptake in pregnancy and SARS-CoV-2 infection outcomes are lacking. We describe COVID-19 vaccine uptake and SARS-CoV-2 infection in pregnant women in Scotland, using whole-population data from a national, prospective cohort. Between the start of a COVID-19 vaccine program in Scotland, on 8 December 2020 and 31 October 2021, 25,917 COVID-19 vaccinations were given to 18,457 pregnant women. Vaccine coverage was substantially lower in pregnant women than in the general female population of 18-44 years; 32.3% of women giving birth in October 2021 had two doses of vaccine compared to 77.4% in all women. The extended perinatal mortality rate for women who gave birth within 28 d of a COVID-19 diagnosis was 22.6 per 1,000 births (95% CI 12.9-38.5; pandemic background rate 5.6 per 1,000 births; 452 out of 80,456; 95% CI 5.1-6.2). Overall, 77.4% (3,833 out of 4,950; 95% CI 76.2-78.6) of SARS-CoV-2 infections, 90.9% (748 out of 823; 95% CI 88.7-92.7) of SARS-CoV-2 associated with hospital admission and 98% (102 out of 104; 95% CI 92.5-99.7) of SARS-CoV-2 associated with critical care admission, as well as all baby deaths, occurred in pregnant women who were unvaccinated at the time of COVID-19 diagnosis. Addressing low vaccine uptake rates in pregnant women is imperative to protect the health of women and babies in the ongoing pandemic.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines/therapeutic use , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , Pregnant Women , Prospective Studies , SARS-CoV-2 , Vaccination
12.
PLoS One ; 11(8): e0159256, 2016.
Article in English | MEDLINE | ID: mdl-27486857

ABSTRACT

BACKGROUND: Reducing health inequalities is an important policy objective but there is limited quantitative information about the impact of specific interventions. OBJECTIVES: To provide estimates of the impact of a range of interventions on health and health inequalities. MATERIALS AND METHODS: Literature reviews were conducted to identify the best evidence linking interventions to mortality and hospital admissions. We examined interventions across the determinants of health: a 'living wage'; changes to benefits, taxation and employment; active travel; tobacco taxation; smoking cessation, alcohol brief interventions, and weight management services. A model was developed to estimate mortality and years of life lost (YLL) in intervention and comparison populations over a 20-year time period following interventions delivered only in the first year. We estimated changes in inequalities using the relative index of inequality (RII). RESULTS: Introduction of a 'living wage' generated the largest beneficial health impact, with modest reductions in health inequalities. Benefits increases had modest positive impacts on health and health inequalities. Income tax increases had negative impacts on population health but reduced inequalities, while council tax increases worsened both health and health inequalities. Active travel increases had minimally positive effects on population health but widened health inequalities. Increases in employment reduced inequalities only when targeted to the most deprived groups. Tobacco taxation had modestly positive impacts on health but little impact on health inequalities. Alcohol brief interventions had modestly positive impacts on health and health inequalities only when strongly socially targeted, while smoking cessation and weight-reduction programmes had minimal impacts on health and health inequalities even when socially targeted. CONCLUSIONS: Interventions have markedly different effects on mortality, hospitalisations and inequalities. The most effective (and likely cost-effective) interventions for reducing inequalities were regulatory and tax options. Interventions focused on individual agency were much less likely to impact on inequalities, even when targeted at the most deprived communities.


Subject(s)
Health Promotion/methods , Health Status Disparities , Taxes/classification , Humans , Investments , Models, Theoretical , Mortality , Patient Admission/statistics & numerical data , Policy , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...