Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 71(2): 350-365, 2023 02.
Article in English | MEDLINE | ID: mdl-36213964

ABSTRACT

Patient diversity and unknown disease cause are major challenges for drug development and clinical trial design for amyotrophic lateral sclerosis (ALS). Transgenic animal models do not adequately reflect the heterogeneity of ALS. Direct reprogramming of patient fibroblasts to neuronal progenitor cells and subsequent differentiation into patient astrocytes allows rapid generation of disease relevant cell types. Thus, this methodology can facilitate compound testing in a diverse genetic background resulting in a more representative population for therapeutic evaluation. Here, we used established co-culture assays with motor neurons and reprogrammed patient skin-derived astrocytes (iAs) to evaluate the effects of (SP-4-2)-[[2,2'-(1,2-dimethyl-1,2-ethanediylidene)bis[N-methylhydrazinecarbothioamidato-κN2 ,κS]](2-)]-copper (CuATSM), currently in clinical trial for ALS in Australia. Pretreatment of iAs with CuATSM had a differential effect on neuronal survival following co-culture with healthy motor neurons. Using this assay, we identified responding and non-responding cell lines for both sporadic and familial ALS (mutant SOD1 and C9ORF72). Importantly, elevated mitochondrial respiration was the common denominator in all CuATSM-responders, a metabolic phenotype not observed in non-responders. Pre-treatment of iAs with CuATSM restored mitochondrial activity to levels comparable to healthy controls. Hence, this metabolic parameter might allow selection of patient subpopulations best suited for CuATSM treatment. Moreover, CuATSM might have additional therapeutic value for mitochondrial disorders. Enhanced understanding of patient-specific cellular and molecular profiles could help improve clinical trial design in the future.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Humans , Amyotrophic Lateral Sclerosis/metabolism , Astrocytes/metabolism , Motor Neurons , Coculture Techniques , Superoxide Dismutase-1/metabolism
2.
Acta Neuropathol ; 144(5): 939-966, 2022 11.
Article in English | MEDLINE | ID: mdl-36121477

ABSTRACT

ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset.


Subject(s)
Amyotrophic Lateral Sclerosis , Endoplasmic Reticulum Stress , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Calcium/metabolism , Frontotemporal Dementia/genetics , HSP70 Heat-Shock Proteins , Humans , Membrane Proteins , Motor Neurons/pathology , Polyribonucleotides
3.
Cells ; 11(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35406750

ABSTRACT

A lack of stratification methods in patients with amyotrophic lateral sclerosis (ALS) is likely implicated in therapeutic failures. Regional diversities and pathophysiological abnormalities in astrocytes from mice with SOD1 mutations (mSOD1-ALS) can now be explored in human patients using somatic cell reprogramming. Here, fibroblasts from four sporadic (sALS) and three mSOD1-ALS patients were transdifferentiated into induced astrocytes (iAstrocytes). ALS iAstrocytes were neurotoxic toward HB9-GFP mouse motor neurons (MNs) and exhibited subtype stratification through GFAP, CX43, Ki-67, miR-155 and miR-146a expression levels. Up- (two cases) and down-regulated (three cases) miR-146a values in iAstrocytes were recapitulated in their secretome, either free or as cargo in small extracellular vesicles (sEVs). We previously showed that the neuroprotective phenotype of depleted miR-146 mSOD1 cortical astrocytes was reverted by its mimic. Thus, we tested such modulation in the most miR-146a-depleted patient-iAstrocytes (one sALS and one mSOD1-ALS). The miR-146a mimic in ALS iAstrocytes counteracted their reactive/inflammatory profile and restored miR-146a levels in sEVs. A reduction in lysosomal activity and enhanced synaptic/axonal transport-related genes in NSC-34 MNs occurred after co-culture with miR-146a-modulated iAstrocytes. In summary, the regulation of miR-146a in depleted ALS astrocytes may be key in reestablishing their normal function and in restoring MN lysosomal/synaptic dynamic plasticity in disease sub-groups.


Subject(s)
Amyotrophic Lateral Sclerosis , MicroRNAs , Neurotoxicity Syndromes , Amyotrophic Lateral Sclerosis/genetics , Animals , Astrocytes , Disease Models, Animal , Fibroblasts , Humans , Mice , MicroRNAs/genetics
4.
Redox Biol ; 50: 102247, 2022 04.
Article in English | MEDLINE | ID: mdl-35121403

ABSTRACT

The diffusion-limited reaction of nitric oxide (NO) and superoxide (O2-) produces peroxynitrite (ONOO-), a biological oxidant that has been implicated in a number of pathological conditions, including neurodegenerative disorders. We previously reported that incubation of PC12 cells with peroxynitrite triggers apoptosis by simultaneously inhibiting the PI3K/Akt survival pathway, and activating the p38 and JNK MAP kinase pathways. We also reported that peroxynitrite-treated Heat Shock Protein 90 (Hsp90) stimulates PC12 cell death. Here, we show that nitrated Hsp90 mediates peroxynitrite-induced apoptosis by regulating specific signaling pathways triggered by activation of the purine receptor P2X7 (P2X7R) and downstream activation of PTEN. Intracellular delivery of peroxynitrite-treated Hsp90 was sufficient to stimulate PC12 cell death. In contrast, intracellular delivery of peroxynitrite-treated Hsp90 in which the five tyrosine (Tyr) residues susceptible to nitration were replaced by nitration-resistant phenylalanine had no effect on PC12 cell survival. Further, only nitration of Hsp90 at Tyr 56 was necessary and sufficient to stimulate PC12 cell apoptosis, and incubation of PC12 cells with peroxynitrite resulted in Hsp90 nitration at Tyr 56. Inhibition of P2X7R or downstream inhibition of PTEN prevented PC12 cell death stimulated by both incubation with peroxynitrite and nitrated Hsp90 (Hsp90NY). Peroxynitrite, Hsp90NY, and P2X7R activation all increased p38 and JNK MAP kinases activity, while inhibiting the Akt survival pathway. These results suggest that, in undifferentiated PC12 cells, peroxynitrite triggers apoptosis via nitration of Hsp90 at Tyr 56, which in turn activates P2X7R and PTEN. These results contrast with observations in motor neurons where the nitration of either Tyr 33 or Tyr 56 in Hsp90 stimulates apoptosis, suggesting that the targets of peroxynitrite may be different in different cell types. However, uncovering the pathways through which peroxynitrite triggers cell death in neurodegenerative conditions will provide new potential targets for therapeutic treatment.


Subject(s)
Peroxynitrous Acid , Tyrosine , Animals , Cell Death , HSP90 Heat-Shock Proteins , PC12 Cells , PTEN Phosphohydrolase , Peroxynitrous Acid/metabolism , Phosphatidylinositol 3-Kinases , Rats , Receptors, Purinergic P2X7 , Tyrosine/metabolism
5.
J Med Chem ; 64(15): 11229-11246, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34293864

ABSTRACT

In this paper, we applied an innovative nuclear magnetic resonance (NMR)-guided screening and ligand design approach, named focused high-throughput screening by NMR (fHTS by NMR), to derive potent, low-molecular-weight ligands capable of mimicking interactions elicited by ephrin ligands on the receptor tyrosine kinase EphA4. The agents bind with nanomolar affinity, trigger receptor activation in cellular assays with motor neurons, and provide remarkable motor neuron protection from amyotrophic lateral sclerosis (ALS) patient-derived astrocytes. Structural studies on the complex between EphA4 ligand-binding domain and a most active agent provide insights into the mechanism of the agents at a molecular level. Together with preliminary in vivo pharmacology studies, the data form a strong foundation for the translation of these agents for the treatment of ALS and potentially other human diseases.


Subject(s)
Amino Acids/pharmacology , Amyotrophic Lateral Sclerosis/drug therapy , Drug Design , Fluorenes/pharmacology , Receptor, EphA4/agonists , Amino Acids/chemistry , Amyotrophic Lateral Sclerosis/metabolism , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Fluorenes/chemistry , High-Throughput Screening Assays , Humans , Ligands , Magnetic Resonance Spectroscopy , Mice , Mice, Transgenic , Models, Molecular , Molecular Structure , Receptor, EphA4/metabolism , Structure-Activity Relationship , Thermodynamics
6.
J Vis Exp ; (172)2021 06 10.
Article in English | MEDLINE | ID: mdl-34180877

ABSTRACT

Research on neurological disorders focuses primarily on the impact of neurons on disease mechanisms. Limited availability of animal models severely impacts the study of cell type specific contributions to disease. Moreover, animal models usually do not reflect variability in mutations and disease courses seen in human patients. Reprogramming methods for generation of induced pluripotent stem cells (iPSCs) have revolutionized patient specific research and created valuable tools for studying disease mechanisms. However, iPSC technology has disadvantages such as time, labor commitment, clonal selectivity and loss of epigenetic markers. Recent modifications of these methods allow more direct generation of cell lineages or specific cell types, bypassing clonal isolation or a pluripotent stem cell state. We have developed a rapid direct conversion method to generate induced Neuronal Progenitor Cells (iNPCs) from skin fibroblasts utilizing retroviral vectors in combination with neuralizing media. The iNPCs can be differentiated into neurons (iNs) oligodendrocytes (iOs) and astrocytes (iAs). iAs production facilitates rapid drug and disease mechanism testing as differentiation from iNPCs only takes 5 days. Moreover, iAs are easy to work with and are generated in pure populations at large numbers. We developed a highly reproducible co-culture assay using mouse GFP+ neurons and patient derived iAs to evaluate potential therapeutic strategies for numerous neurological and neurodegenerative disorders. Importantly, the iA assays are scalable to 384-well format facilitating the evaluation of multiple small molecules in one plate. This approach allows simultaneous therapeutic evaluation of multiple patient cell lines with diverse genetic background. Easy production and storage of iAs and capacity to screen multiple compounds in one assay renders this methodology adaptable for personalized medicine.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Animals , Astrocytes , Cell Differentiation , Fibroblasts , Humans , Mice , Neurons
7.
Exp Neurol ; 271: 301-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26071088

ABSTRACT

Riluzole is the only FDA approved drug for the treatment of amyotrophic lateral sclerosis (ALS). However, the drug affords moderate protection to ALS patients, extending life for a few months by a mechanism that remains controversial. In the presence of riluzole, astrocytes increase the production of factors protective to motor neurons. The stimulation of trophic factor production by motor neuron associated cells may contribute to riluzole's protective effect in ALS. Here, we investigated the effects of media conditioned by astrocytes and Schwann cells acutely or chronically incubated with riluzole on trophic factor-deprived motor neuron survival. While acute riluzole incubation induced CT-1 secretion by astrocytes and Schwann cells, chronic treatment stimulated a significant decrease in trophic factor production compared to untreated cultures. Accordingly, conditioned media from astrocytes and Schwann cells acutely treated with riluzole protected motor neurons from trophic factor deprivation-induced cell death. Motor neuron protection was prevented by incubation with CT-1 neutralizing antibodies. In contrast, conditioned media from astrocytes and Schwann cells chronically treated with riluzole was not protective. Acute and chronic treatment of mice with riluzole showed opposite effects on trophic factor production in spinal cord, sciatic nerve and brain. There was an increase in the production of CT-1 and GDNF in the spinal cord and CT-1 in the sciatic nerve during the first days of treatment with riluzole, but the levels dropped significantly after chronic treatment with the drug. Similar results were observed in brain for CT-1 and BDNF while there was no change in GDNF levels after riluzole treatment. Our results reveal that riluzole regulates long-lasting processes involving protein synthesis, which may be relevant for riluzole therapeutic effects. Changing the regimen of riluzole administration to favor the acute effect of the drug on trophic factor production by discontinuous long-term treatment may improve the outcome of ALS patient therapy.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Nervous System/growth & development , Neuroglia/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Riluzole/pharmacology , Animals , Animals, Newborn , Cells, Cultured , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Embryo, Mammalian , Gene Expression Regulation/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/pharmacology , Male , Mice , Mice, Inbred C57BL , Nervous System/metabolism , Neuroglia/metabolism , Rats , Rats, Sprague-Dawley , Schwann Cells/chemistry , Schwann Cells/drug effects , Time Factors
8.
J Biol Chem ; 290(31): 19055-66, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26085096

ABSTRACT

Peroxynitrite production and tyrosine nitration are present in several pathological conditions, including neurodegeneration, stroke, aging, and cancer. Nitration of the pro-survival chaperone heat shock protein 90 (Hsp90) in position 33 and 56 induces motor neuron death through a toxic gain-of-function. Here we show that nitrated Hsp90 regulates mitochondrial metabolism independently of the induction of cell death. In PC12 cells, a small fraction of nitrated Hsp90 was located on the mitochondrial outer membrane and down-regulated mitochondrial membrane potential, oxygen consumption, and ATP production. Neither endogenous Hsp90 present in the homogenate nor unmodified and fully active recombinant Hsp90 was able to compete with the nitrated protein for the binding to mitochondria. Moreover, endogenous or recombinant Hsp90 did not prevent the decrease in mitochondrial activity but supported nitrated Hsp90 mitochondrial gain-of-function. Nitrotyrosine in position 33, but not in any of the other four tyrosine residues prone to nitration in Hsp90, was sufficient to down-regulate mitochondrial activity. Thus, in addition to induction of cell death, nitrated Hsp90 can also regulate mitochondrial metabolism, suggesting that depending on the cell type, distinct Hsp90 nitration states regulate different aspects of cellular metabolism. This regulation of mitochondrial homeostasis by nitrated Hsp90 could be of particular relevance in cancer cells.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Mitochondria/metabolism , Protein Processing, Post-Translational , Tyrosine/analogs & derivatives , Adenosine Triphosphate/biosynthesis , Animals , Energy Metabolism , PC12 Cells , Protein Transport , Rats , Tyrosine/metabolism
9.
Free Radic Biol Med ; 55: 101-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23195686

ABSTRACT

Tyrosine nitration is a biomarker for the production of peroxynitrite and other reactive nitrogen species. Nitrotyrosine immunoreactivity is present in many pathological conditions including several cardiac diseases. Because the events observed during heart failure may recapitulate some aspects of development, we tested whether nitrotyrosine is present during normal development of the rat embryo heart and its potential relationship in cardiac remodeling through apoptosis. Nitric oxide production is highly dynamic during development, but whether peroxynitrite and nitrotyrosine are formed during normal embryonic development has received little attention. Rat embryo hearts exhibited strong nitrotyrosine immunoreactivity in endocardial and myocardial cells of the atria and ventricles from E12 to E18. After E18, nitrotyrosine staining faded and disappeared entirely by birth. Tyrosine nitration in the myocardial tissue coincided with elevated protein expression of nitric oxide synthases (eNOS and iNOS). The immunoreactivity for these NOS isoforms remained elevated even after nitrotyrosine had disappeared. Tyrosine nitration did not correlate with cell death or proliferation of cardiac cells. Analysis of tryptic peptides by MALDI-TOF showed that nitration occurs in actin, myosin, and the mitochondrial ATP synthase α chain. These results suggest that reactive nitrogen species are not restricted to pathological conditions but may play a role during normal embryonic development.


Subject(s)
Heart/embryology , Tyrosine/analogs & derivatives , Animals , Female , Pregnancy , Rats , Rats, Sprague-Dawley , Time Factors , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...