Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Clin Oncol ; 25(7): 1234-1241, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32215806

ABSTRACT

BACKGROUND: With the development of precision oncology, Molecular Tumor Boards (MTB) are developing in many institutions. However, the implementation of MTB in routine clinical practice has still not been thoroughly studied. MATERIAL AND METHODS: Since the first drugs approved for targeted therapies, patient tumor samples were centralized to genomic testing platforms. In our institution, all tumor samples have been analyzed since 2014 by Next Generation Sequencing (NGS). In 2015, we established a regional MTB to discuss patient cases with 1 or more alterations identified by NGS, in genes different from those related to drug approval. We conducted a retrospective comparative analysis to study whether our MTB increased the prescriptions of Molecular Targeted Therapies (MTT) and the inclusions of patients in clinical trials with MTT, in comparison with patients with available NGS data but no MTB discussion. RESULTS: In 2014, 86 patients had UGA, but the results were not available to clinicians and not discussed in MTB. During the years 2015 and 2016, 113 patients with an UGA (unreferenced genomic alteration) were discussed in MTB. No patients with an UGA were included in 2014 in a clinical trial, versus 2 (2%) in 2015-2016. 13 patients with an UGA (12%) were treated in 2015-2016 with a MTT whereas in 2014, no patient (p = 0.001). CONCLUSIONS: In this retrospective analysis, we showed that the association of large-scale genomic testing and MTB was feasible, and could increase the prescription of MTT. However, in routine clinical practice, the majority of patients with UGA still do not have access to MTT.


Subject(s)
Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/therapy , Adolescent , Adult , Aged , Aged, 80 and over , Child , Drug Resistance, Neoplasm/genetics , Female , Health Services Accessibility , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Medical Oncology , Middle Aged , Neoplasms/drug therapy , Precision Medicine/methods , Retrospective Studies , Treatment Outcome , Young Adult
2.
Mol Cancer ; 19(1): 36, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32098627

ABSTRACT

BACKGROUND: Literature reports that mature microRNA (miRNA) can be methylated at adenosine, guanosine and cytosine. However, the molecular mechanisms involved in cytosine methylation of miRNAs have not yet been fully elucidated. Here we investigated the biological role and underlying mechanism of cytosine methylation in miRNAs in glioblastoma multiforme (GBM). METHODS: RNA immunoprecipitation with the anti-5methylcytosine (5mC) antibody followed by Array, ELISA, dot blot, incorporation of a radio-labelled methyl group in miRNA, and miRNA bisulfite sequencing were perfomred to detect the cytosine methylation in mature miRNA. Cross-Linking immunoprecipiation qPCR, transfection with methylation/unmethylated mimic miRNA, luciferase promoter reporter plasmid, Biotin-tagged 3'UTR/mRNA or miRNA experiments and in vivo assays were used to investigate the role of methylated miRNAs. Finally, the prognostic value of methylated miRNAs was analyzed in a cohorte of GBM pateints. RESULTS: Our study reveals that a significant fraction of miRNAs contains 5mC. Cellular experiments show that DNMT3A/AGO4 methylated miRNAs at cytosine residues inhibit the formation of miRNA/mRNA duplex and leading to the loss of their repressive function towards gene expression. In vivo experiments show that cytosine-methylation of miRNA abolishes the tumor suppressor function of miRNA-181a-5p miRNA for example. Our study also reveals that cytosine-methylation of miRNA-181a-5p results is associated a poor prognosis in GBM patients. CONCLUSION: Together, our results indicate that the DNMT3A/AGO4-mediated cytosine methylation of miRNA negatively.


Subject(s)
Biomarkers, Tumor/genetics , Cytosine/chemistry , DNA Methylation , Glioblastoma/pathology , MicroRNAs/genetics , Animals , Apoptosis , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Cell Proliferation , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Mice, Nude , Prognosis , Promoter Regions, Genetic , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...