Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10868, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740836

ABSTRACT

Therapeutic antibodies have been developed to target amyloid-beta (Aß), and some of these slow the progression of Alzheimer's disease (AD). However, they can also cause adverse events known as amyloid-related imaging abnormalities with edema (ARIA-E). We investigated therapeutic Aß antibody binding to cerebral amyloid angiopathy (CAA) fibrils isolated from human leptomeningeal tissue to study whether this related to the ARIA-E frequencies previously reported by clinical trials. The binding of Aß antibodies to CAA Aß fibrils was evaluated in vitro using immunoprecipitation, surface plasmon resonance, and direct binding assay. Marked differences in Aß antibody binding to CAA fibrils were observed. Solanezumab and crenezumab showed negligible CAA fibril binding and these antibodies have no reported ARIA-E cases. Lecanemab showed a low binding to CAA fibrils, consistent with its relatively low ARIA-E frequency of 12.6%, while aducanumab, bapineuzumab, and gantenerumab all showed higher binding to CAA fibrils and substantially higher ARIA-E frequencies (25-35%). An ARIA-E frequency of 24% was reported for donanemab, and its binding to CAA fibrils correlated with the amount of pyroglutamate-modified Aß present. The findings of this study support the proposal that Aß antibody-CAA interactions may relate to the ARIA-E frequency observed in patients treated with Aß-based immunotherapies.


Subject(s)
Amyloid beta-Peptides , Cerebral Amyloid Angiopathy , Humans , Cerebral Amyloid Angiopathy/immunology , Cerebral Amyloid Angiopathy/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Protein Binding , Amyloid/metabolism , Amyloid/immunology , Surface Plasmon Resonance
2.
Mol Psychiatry ; 28(9): 3966-3981, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37907591

ABSTRACT

Accumulation of amyloid ß-peptide (Aß) is a driver of Alzheimer's disease (AD). Amyloid precursor protein (App) knock-in mouse models recapitulate AD-associated Aß pathology, allowing elucidation of downstream effects of Aß accumulation and their temporal appearance upon disease progression. Here we have investigated the sequential onset of AD-like pathologies in AppNL-F and AppNL-G-F knock-in mice by time-course transcriptome analysis of hippocampus, a region severely affected in AD. Strikingly, energy metabolism emerged as one of the most significantly altered pathways already at an early stage of pathology. Functional experiments in isolated mitochondria from hippocampus of both AppNL-F and AppNL-G-F mice confirmed an upregulation of oxidative phosphorylation driven by the activity of mitochondrial complexes I, IV and V, associated with higher susceptibility to oxidative damage and Ca2+-overload. Upon increasing pathologies, the brain shifts to a state of hypometabolism with reduced abundancy of mitochondria in presynaptic terminals. These late-stage mice also displayed enlarged presynaptic areas associated with abnormal accumulation of synaptic vesicles and autophagosomes, the latter ultimately leading to local autophagy impairment in the synapses. In summary, we report that Aß-induced pathways in App knock-in mouse models recapitulate key pathologies observed in AD brain, and our data herein adds a comprehensive understanding of the pathologies including dysregulated metabolism and synapses and their timewise appearance to find new therapeutic approaches for AD.


Subject(s)
Alzheimer Disease , Mobile Applications , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Autophagy/genetics , Disease Models, Animal , Mice, Transgenic
3.
J Alzheimers Dis ; 90(2): 565-583, 2022.
Article in English | MEDLINE | ID: mdl-36155507

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) research has relied on mouse models overexpressing human mutant A ßPP; however, newer generation knock-in models allow for physiological expression of amyloid-ß protein precursor (AßPP) containing familial AD mutations where murine AßPP is edited with a humanized amyloid-ß (Aß) sequence. The AppNL-F mouse model has shown substantial similarities to AD brains developing late onset cognitive impairment. OBJECTIVE: In this study, we aimed to characterize mature primary cortical neurons derived from homozygous AppNL-F embryos, especially to identify early mitochondrial alterations in this model. METHODS: Primary cultures of AppNL-F neurons kept in culture for 12-15 days were used to measure Aß levels, secretase activity, mitochondrial functions, mitochondrial-ER contacts, synaptic function, and cell death. RESULTS: We detected higher levels of Aß42 released from AppNL-F neurons as compared to wild-type neurons. AppNL-F neurons, also displayed an increased Aß42/Aß40 ratio, similar to adult AppNL-F mouse brain. Interestingly, we found an upregulation in mitochondrial oxygen consumption with concomitant downregulation in glycolytic reserve. Furthermore, AppNL-F neurons were more susceptible to cell death triggered by mitochondrial electron transport chain inhibition. Juxtaposition between ER and mitochondria was found to be substantially upregulated, which may account for upregulated mitochondrial-derived ATP production. However, anterograde mitochondrial movement was severely impaired in this model along with loss in synaptic vesicle protein and impairment in pre- and post-synaptic function. CONCLUSION: We show that widespread mitochondrial alterations can be detected in AppNL-F neurons in vitro, where amyloid plaque deposition does not occur, suggesting soluble and oligomeric Aß-species being responsible for these alterations.


Subject(s)
Alzheimer Disease , Animals , Mice , Humans , Alzheimer Disease/metabolism , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Neurons/metabolism , Plaque, Amyloid/metabolism , Disease Models, Animal
4.
Front Cell Dev Biol ; 10: 920228, 2022.
Article in English | MEDLINE | ID: mdl-36092728

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease affecting a growing number of elderly individuals. No disease-modifying drugs have yet been identified despite over 30 years of research on the topic, showing the need for further research on this multifactorial disease. In addition to the accumulation of amyloid ß-peptide (Aß) and hyperphosphorylated tau (p-tau), several other alterations have been associated with AD such as calcium (Ca2+) signaling, glucose-, fatty acid-, cholesterol-, and phospholipid metabolism, inflammation, and mitochondrial dysfunction. Interestingly, all these processes have been associated with the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) signaling hub. We and others have hypothesized that the dysregulated MERCS function may be one of the main pathogenic pathways driving AD pathology. Due to the variety of biological processes overseen at the MERCS, we believe that they constitute unique therapeutic targets to boost the neuronal function and recover neuronal homeostasis. Thus, developing molecules with the capacity to correct and/or modulate the MERCS interplay can unleash unique therapeutic opportunities for AD. The potential pharmacological intervention using MERCS modulators in different models of AD is currently under investigation. Here, we survey small molecules with the potential to modulate MERCS structures and functions and restore neuronal homeostasis in AD. We will focus on recently reported examples and provide an overview of the current challenges and future perspectives to develop MERCS modulators in the context of translational research.

5.
Cells ; 11(3)2022 02 02.
Article in English | MEDLINE | ID: mdl-35159324

ABSTRACT

Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) have been emerging as a multifaceted subcellular region of the cell which affects several physiological and pathological mechanisms. A thus far underexplored aspect of MERCS is their contribution to exocytosis. Here, we set out to understand the role of these contacts in exocytosis and find potential mechanisms linking these structures to vesicle release in human neuroblastoma SH-SY5Y cells. We show that increased mitochondria to ER juxtaposition through Mitofusin 2 (Mfn2) knock-down resulted in a substantial upregulation of the number of MERCS, confirming the role of Mfn2 as a negative regulator of these structures. Furthermore, we report that both vesicle numbers and vesicle protein levels were decreased, while a considerable upregulation in exocytotic events upon cellular depolarization was detected. Interestingly, in Mfn2 knock-down cells, the inhibition of the inositol 1,4,5-trisphosphate receptor (IP3R) and the mitochondrial calcium (Ca2+) uniporter (MCU) restored vesicle protein content and attenuated exocytosis. We thus suggest that MERCS could be targeted to prevent increased exocytosis in conditions in which ER to mitochondria proximity is upregulated.


Subject(s)
Endoplasmic Reticulum , Neuroblastoma , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Neuroblastoma/metabolism
6.
BMC Biol ; 19(1): 57, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33761951

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.


Subject(s)
Endoplasmic Reticulum/drug effects , Luteolin/pharmacology , Mitochondria/drug effects , Neurons/metabolism , Animals , Cell Line, Tumor , Drug Evaluation, Preclinical , Endoplasmic Reticulum/metabolism , High-Throughput Screening Assays , Humans , Mice , Mitochondria/metabolism , Neurons/drug effects , Signal Transduction
7.
J Neurosci ; 41(19): 4321-4334, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33785643

ABSTRACT

Peripheral neuropathy (PN) is the most common complication of prediabetes and diabetes. PN causes severe morbidity for Type 2 diabetes (T2D) and prediabetes patients, including limb pain followed by numbness resulting from peripheral nerve damage. PN in T2D and prediabetes is associated with dyslipidemia and elevated circulating lipids; however, the molecular mechanisms underlying PN development in prediabetes and T2D are unknown. Peripheral nerve sensory neurons rely on axonal mitochondria to provide energy for nerve impulse conduction under homeostatic conditions. Models of dyslipidemia in vitro demonstrate mitochondrial dysfunction in sensory neurons exposed to elevated levels of exogenous fatty acids. Herein, we evaluated the effect of dyslipidemia on mitochondrial function and dynamics in sensory axons of the saphenous nerve of a male high-fat diet (HFD)-fed murine model of prediabetes to identify mitochondrial alterations that correlate with PN pathogenesis in vivo We found that the HFD decreased mitochondrial membrane potential (MMP) in axonal mitochondria and reduced the ability of sensory neurons to conduct at physiological frequencies. Unlike mitochondria in control axons, which dissipated their MMP in response to increased impulse frequency (from 1 to 50 Hz), HFD mitochondria dissipated less MMP in response to axonal energy demand, suggesting a lack of reserve capacity. The HFD also decreased sensory axonal Ca2+ levels and increased mitochondrial lengthening and expression of PGC1α, a master regulator of mitochondrial biogenesis. Together, these results suggest that mitochondrial dysfunction underlies an imbalance of axonal energy and Ca2+ levels and impairs impulse conduction within the saphenous nerve in prediabetic PN.SIGNIFICANCE STATEMENT Diabetes and prediabetes are leading causes of peripheral neuropathy (PN) worldwide. PN has no cure, but development in diabetes and prediabetes is associated with dyslipidemia, including elevated levels of saturated fatty acids. Saturated fatty acids impair mitochondrial dynamics and function in cultured neurons, indicating a role for mitochondrial dysfunction in PN progression; however, the effect of elevated circulating fatty acids on the peripheral nervous system in vivo is unknown. In this study, we identify early pathogenic events in sensory nerve axons of mice with high-fat diet-induced PN, including alterations in mitochondrial function, axonal conduction, and intra-axonal calcium, that provide important insight into potential PN mechanisms associated with prediabetes and dyslipidemia in vivo.


Subject(s)
Axons/drug effects , Diet, High-Fat/adverse effects , Mitochondria/drug effects , Animals , Axons/pathology , Calcium/metabolism , Diabetes Mellitus, Type 2/pathology , Dietary Fats , Dyslipidemias/pathology , Energy Metabolism , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mitochondria/pathology , Mitochondrial Dynamics , Neural Conduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Prediabetic State/pathology , Rats , Sensory Receptor Cells/pathology
8.
Cells ; 9(12)2020 11 28.
Article in English | MEDLINE | ID: mdl-33260715

ABSTRACT

Recent findings have shown that the connectivity and crosstalk between mitochondria and the endoplasmic reticulum (ER) at mitochondria-ER contact sites (MERCS) are altered in Alzheimer's disease (AD) and in AD-related models. MERCS have been related to the initial steps of autophagosome formation as well as regulation of mitochondrial function. Here, the interplay between MERCS, mitochondria ultrastructure and function and autophagy were evaluated in different AD animal models with increased levels of Aß as well as in primary neurons derived from these animals. We start by showing that the levels of Mitofusin 1, Mitofusin 2 and mitochondrial import receptor subunit TOM70 are decreased in post-mortem brain tissue derived from familial AD. We also show that Aß increases the juxtaposition between ER and mitochondria both in adult brain of different AD mouse models as well as in primary cultures derived from these animals. In addition, the connectivity between ER and mitochondria are also increased in wild-type neurons exposed to Aß. This alteration in MERCS affects autophagosome formation, mitochondrial function and ATP formation during starvation. Interestingly, the increment in ER-mitochondria connectivity occurs simultaneously with an increase in mitochondrial activity and is followed by upregulation of autophagosome formation in a clear chronological sequence of events. In summary, we report that Aß can affect cell homeostasis by modulating MERCS and, consequently, altering mitochondrial activity and autophagosome formation. Our data suggests that MERCS is a potential target for drug discovery in AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Autophagosomes/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Aged , Aged, 80 and over , Alzheimer Disease/physiopathology , Animals , Autophagosomes/physiology , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , Endoplasmic Reticulum/physiology , Female , Homeostasis/physiology , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Neurons/metabolism , Neurons/physiology , Up-Regulation/physiology
9.
Acta Neuropathol Commun ; 6(1): 102, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30270816

ABSTRACT

Idiopathic normal pressure hydrocephalus (iNPH) is a neuropathology with unknown cause characterised by gait impairment, cognitive decline and ventriculomegaly. These patients often present comorbidity with Alzheimer's disease (AD), including AD pathological hallmarks such as amyloid plaques mainly consisting of amyloid ß-peptide and neurofibrillary tangles consisting of hyperphosphorylated tau protein. Even though some of the molecular mechanisms behind AD are well described, little is known about iNPH. Several studies have reported that mitochondria-endoplasmic reticulum contact sites (MERCS) regulate amyloid ß-peptide metabolism and conversely that amyloid ß-peptide can influence the number of MERCS. MERCS have also been shown to be dysregulated in several neurological pathologies including AD.In this study we have used transmission electron microscopy and show, for the first time, several mitochondria contact sites including MERCS in human brain biopsies. These unique human brain samples were obtained during neurosurgery from 14 patients that suffer from iNPH. Three of these 14 patients presented comorbidities with other dementias: one patient with AD, one with AD and vascular dementia and one patient with Lewy body dementia. Furthermore, we report that the numbers of MERCS are increased in biopsies obtained from patients diagnosed with dementia. Moreover, the presence of both amyloid plaques and neurofibrillary tangles correlates with decreased contact length between endoplasmic reticulum and mitochondria, while amyloid plaques alone do not seem to affect endoplasmic reticulum-mitochondria apposition. Interestingly, we report a significant positive correlation between the number of MERCS and ventricular cerebrospinal fluid amyloid ß-peptide levels, as well as with increasing age of iNPH patients.


Subject(s)
Biopsy , Brain/pathology , Brain/ultrastructure , Endoplasmic Reticulum/metabolism , Hydrocephalus, Normal Pressure/pathology , Mitochondria/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Protein Precursor/metabolism , Endoplasmic Reticulum/ultrastructure , Female , Humans , Hydrocephalus, Normal Pressure/cerebrospinal fluid , Male , Mental Status Schedule , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Statistics, Nonparametric , tau Proteins/metabolism
10.
Curr Biol ; 28(3): 369-382.e6, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29395920

ABSTRACT

The mitochondrial translocase of the outer membrane (TOM) is a protein complex that is essential for the post-translational import of nuclear-encoded mitochondrial proteins. Among its subunits, TOM70 and TOM20 are only transiently associated with the core complex, suggesting their possible additional roles within the outer mitochondrial membrane (OMM). Here, by using different mammalian cell lines, we demonstrate that TOM70, but not TOM20, clusters in distinct OMM foci, frequently overlapping with sites in which the endoplasmic reticulum (ER) contacts mitochondria. Functionally, TOM70 depletion specifically impairs inositol trisphosphates (IP3)-linked ER to mitochondria Ca2+ transfer. This phenomenon is dependent on the capacity of TOM70 to interact with IP3-receptors and favor their functional recruitment close to mitochondria. Importantly, the reduced constitutive Ca2+ transfer to mitochondria, observed in TOM70-depleted cells, dampens mitochondrial respiration, affects cell bioenergetics, induces autophagy, and inhibits proliferation. Our data reveal a hitherto unexpected role for TOM70 in pro-survival ER-mitochondria communication, reinforcing the view that the ER-mitochondria signaling platform is a key regulator of cell fate.


Subject(s)
Calcium/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/metabolism , Receptors, Cell Surface/genetics , Animals , Endoplasmic Reticulum/metabolism , Female , HEK293 Cells , HeLa Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Receptors, Cell Surface/metabolism
11.
Acta Neuropathol Commun ; 4: 34, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27036949

ABSTRACT

Alterations in calcium homeostasis are widely reported to contribute to synaptic degeneration and neuronal loss in Alzheimer's disease. Elevated cytosolic calcium concentrations lead to activation of the calcium-sensitive cysteine protease, calpain, which has a number of substrates known to be abnormally regulated in disease. Analysis of human brain has shown that calpain activity is elevated in AD compared to controls, and that calpain-mediated proteolysis regulates the activity of important disease-associated proteins including the tau kinases cyclin-dependent kinase 5 and glycogen kinase synthase-3. Here, we sought to investigate the likely temporal association between these changes during the development of sporadic AD using Braak staged post-mortem brain. Quantification of protein amounts in these tissues showed increased activity of calpain-1 from Braak stage III onwards in comparison to controls, extending previous findings that calpain-1 is upregulated at end-stage disease, and suggesting that activation of calcium-sensitive signalling pathways are sustained from early stages of disease development. Increases in calpain-1 activity were associated with elevated activity of the endogenous calpain inhibitor, calpastatin, itself a known calpain substrate. Activation of the tau kinases, glycogen-kinase synthase-3 and cyclin-dependent kinase 5 were also found to occur in Braak stage II-III brain, and these preceded global elevations in tau phosphorylation and the loss of post-synaptic markers. In addition, we identified transient increases in total amyloid precursor protein and pre-synaptic markers in Braak stage II-III brain, that were lost by end stage Alzheimer's disease, that may be indicative of endogenous compensatory responses to the initial stages of neurodegeneration. These findings provide insight into the molecular events that underpin the progression of Alzheimer's disease, and further highlight the rationale for investigating novel treatment strategies that are based on preventing abnormal calcium homeostasis or blocking increases in the activity of calpain or important calpain substrates.


Subject(s)
Alzheimer Disease/pathology , Brain/metabolism , Calpain/metabolism , Synapses/metabolism , Up-Regulation/physiology , tau Proteins/metabolism , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Cyclin-Dependent Kinase 5/metabolism , Disease Progression , Female , Glycogen Synthase Kinase 3/metabolism , Humans , Male , Middle Aged , Peptide Fragments/metabolism , Phosphopyruvate Hydratase/metabolism , Phosphorylation/physiology , Postmortem Changes , Spectrin/metabolism , Synapses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...