Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4388, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782901

ABSTRACT

Lung cancer is the second most frequently diagnosed cancer and the leading cause of cancer-related mortality worldwide. Tumour ecosystems feature diverse immune cell types. Myeloid cells, in particular, are prevalent and have a well-established role in promoting the disease. In our study, we profile approximately 900,000 cells from 25 treatment-naive patients with adenocarcinoma and squamous-cell carcinoma by single-cell and spatial transcriptomics. We note an inverse relationship between anti-inflammatory macrophages and NK cells/T cells, and with reduced NK cell cytotoxicity within the tumour. While we observe a similar cell type composition in both adenocarcinoma and squamous-cell carcinoma, we detect significant differences in the co-expression of various immune checkpoint inhibitors. Moreover, we reveal evidence of a transcriptional "reprogramming" of macrophages in tumours, shifting them towards cholesterol export and adopting a foetal-like transcriptional signature which promotes iron efflux. Our multi-omic resource offers a high-resolution molecular map of tumour-associated macrophages, enhancing our understanding of their role within the tumour microenvironment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Single-Cell Analysis/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Gene Expression Profiling/methods , Macrophages/metabolism , Macrophages/immunology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
2.
Bioinformatics ; 40(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38656989

ABSTRACT

MOTIVATION: Few methods exist for timing individual amplification events in regions of focal amplification. Current methods are also limited in the copy number states that they are able to time. Here we introduce AmplificationTimeR, a method for timing higher level copy number gains and inferring the most parsimonious order of events for regions that have undergone both single gains and whole genome duplication. Our method is an extension of established approaches for timing genomic gains. RESULTS: We can time more copy number states, and in states covered by other methods our results are comparable to previously published methods. AVAILABILITY AND IMPLEMENTATION: AmplificationTimer is freely available as an R package hosted at https://github.com/Wedge-lab/AmplificationTimeR.


Subject(s)
Software , Genomics/methods , Algorithms , Humans , DNA Copy Number Variations
3.
Cell Genom ; 4(3): 100511, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38428419

ABSTRACT

The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Alternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostate/metabolism , Mutation , Genomics , Evolution, Molecular
5.
Nat Genet ; 55(2): 232-245, 2023 02.
Article in English | MEDLINE | ID: mdl-36658434

ABSTRACT

NOTCH1 mutant clones occupy the majority of normal human esophagus by middle age but are comparatively rare in esophageal cancers, suggesting NOTCH1 mutations drive clonal expansion but impede carcinogenesis. Here we test this hypothesis. Sequencing NOTCH1 mutant clones in aging human esophagus reveals frequent biallelic mutations that block NOTCH1 signaling. In mouse esophagus, heterozygous Notch1 mutation confers a competitive advantage over wild-type cells, an effect enhanced by loss of the second allele. Widespread Notch1 loss alters transcription but has minimal effects on the epithelial structure and cell dynamics. In a carcinogenesis model, Notch1 mutations were less prevalent in tumors than normal epithelium. Deletion of Notch1 reduced tumor growth, an effect recapitulated by anti-NOTCH1 antibody treatment. Notch1 null tumors showed reduced proliferation. We conclude that Notch1 mutations in normal epithelium are beneficial as wild-type Notch1 favors tumor expansion. NOTCH1 blockade may have therapeutic potential in preventing esophageal squamous cancer.


Subject(s)
Esophageal Neoplasms , Animals , Humans , Mice , Middle Aged , Carcinogenesis/pathology , Epithelium/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Mutation , Receptor, Notch1/genetics
7.
Nature ; 611(7936): 594-602, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36352222

ABSTRACT

Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour1-3. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive4,5. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Clonal Evolution , Clone Cells , Genomics , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Clonal Evolution/genetics , Clone Cells/metabolism , Clone Cells/pathology , Mutation , Tumor Microenvironment/genetics , Whole Genome Sequencing , Transcriptome , Reproducibility of Results , Microdissection , Algorithms
8.
Nat Commun ; 13(1): 6206, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266286

ABSTRACT

Aging normal human oesophagus accumulates TP53 mutant clones. These are the origin of most oesophageal squamous carcinomas, in which biallelic TP53 disruption is almost universal. However, how p53 mutant clones expand and contribute to cancer development is unclear. Here we show that inducing the p53R245W mutant in single oesophageal progenitor cells in transgenic mice confers a proliferative advantage and clonal expansion but does not disrupt normal epithelial structure. Loss of the remaining p53 allele in mutant cells results in genomically unstable p53R245W/null epithelium with giant polyaneuploid cells and copy number altered clones. In carcinogenesis, p53 mutation does not initiate tumour formation, but tumours developing from areas with p53 mutation and LOH are larger and show extensive chromosomal instability compared to lesions arising in wild type epithelium. We conclude that p53 has distinct functions at different stages of carcinogenesis and that LOH within p53 mutant clones in normal epithelium is a critical step in malignant transformation.


Subject(s)
Carcinogenesis , Tumor Suppressor Protein p53 , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , Carcinogenesis/genetics , Clone Cells , Esophagus , Mice, Transgenic , Chromosomal Instability , Mutation
9.
Nat Commun ; 13(1): 4272, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953478

ABSTRACT

Germ cell tumours (GCTs) are a collection of benign and malignant neoplasms derived from primordial germ cells. They are uniquely able to recapitulate embryonic and extraembryonic tissues, which carries prognostic and therapeutic significance. The developmental pathways underpinning GCT initiation and histogenesis are incompletely understood. Here, we study the relationship of histogenesis and clonal diversification in GCTs by analysing the genomes and transcriptomes of 547 microdissected histological units. We find no correlation between genomic and histological heterogeneity. However, we identify unifying features including the retention of fetal developmental transcripts across tissues, expression changes on chromosome 12p, and a conserved somatic evolutionary sequence of whole genome duplication followed by clonal diversification. While this pattern is preserved across all GCTs, the developmental timing of the duplication varies between prepubertal and postpubertal cases. In addition, tumours of younger children exhibit distinct substitution signatures which may lend themselves as potential biomarkers for risk stratification. Our findings portray the extensive diversification of GCT tissues and genetic subclones as randomly distributed, while identifying overarching transcriptional and genomic features.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Child , Genomics , Humans , Male , Neoplasms, Germ Cell and Embryonal/genetics , Testicular Neoplasms/genetics , Transcriptome/genetics
10.
Nat Genet ; 54(2): 128-133, 2022 02.
Article in English | MEDLINE | ID: mdl-35145300

ABSTRACT

The infinite sites model of molecular evolution posits that every position in the genome is mutated at most once1. By restricting the number of possible mutation histories, haplotypes and alleles, it forms a cornerstone of tumor phylogenetic analysis2 and is often implied when calling, phasing and interpreting variants3,4 or studying the mutational landscape as a whole5. Here we identify 18,295 biallelic mutations, where the same base is mutated independently on both parental copies, in 559 (21%) bulk sequencing samples from the Pan-Cancer Analysis of Whole Genomes study. Biallelic mutations reveal ultraviolet light damage hotspots at E26 transformation-specific (ETS) and nuclear factor of activated T cells (NFAT) binding sites, and hypermutable motifs in POLE-mutant and other cancers. We formulate recommendations for variant calling and provide frameworks to model and detect biallelic mutations. These results highlight the need for accurate models of mutation rates and tumor evolution, as well as their inference from sequencing data.


Subject(s)
Genome, Human , Mutation , Neoplasms/genetics , Alleles , Evolution, Molecular , Humans , Models, Genetic , Mutation Rate , Whole Genome Sequencing
11.
Nat Commun ; 12(1): 6946, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836952

ABSTRACT

Black women across the African diaspora experience more aggressive breast cancer with higher mortality rates than white women of European ancestry. Although inter-ethnic germline variation is known, differential somatic evolution has not been investigated in detail. Analysis of deep whole genomes of 97 breast cancers, with RNA-seq in a subset, from women in Nigeria in comparison with The Cancer Genome Atlas (n = 76) reveal a higher rate of genomic instability and increased intra-tumoral heterogeneity as well as a unique genomic subtype defined by early clonal GATA3 mutations with a 10.5-year younger age at diagnosis. We also find non-coding mutations in bona fide drivers (ZNF217 and SYPL1) and a previously unreported INDEL signature strongly associated with African ancestry proportion, underscoring the need to expand inclusion of diverse populations in biomedical research. Finally, we demonstrate that characterizing tumors for homologous recombination deficiency has significant clinical relevance in stratifying patients for potentially life-saving therapies.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Clonal Evolution , Health Status Disparities , Adult , Aged , Biopsy , Black People/ethnology , Black People/genetics , Breast/pathology , Breast Neoplasms/ethnology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , DNA Mutational Analysis , Female , GATA3 Transcription Factor/genetics , Genetic Heterogeneity , Genomic Instability , Germ-Line Mutation , Humans , Middle Aged , Nigeria/epidemiology , Nigeria/ethnology , RNA-Seq , Risk Assessment , Synaptophysin/genetics , Trans-Activators/genetics , Tumor Microenvironment/genetics , White People/ethnology , White People/genetics , Whole Genome Sequencing
12.
Nat Commun ; 12(1): 4496, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301934

ABSTRACT

Leiomyosarcomas (LMS) are genetically heterogeneous tumors differentiating along smooth muscle lines. Currently, LMS treatment is not informed by molecular subtyping and is associated with highly variable survival. While disease site continues to dictate clinical management, the contribution of genetic factors to LMS subtype, origins, and timing are unknown. Here we analyze 70 genomes and 130 transcriptomes of LMS, including multiple tumor regions and paired metastases. Molecular profiling highlight the very early origins of LMS. We uncover three specific subtypes of LMS that likely develop from distinct lineages of smooth muscle cells. Of these, dedifferentiated LMS with high immune infiltration and tumors primarily of gynecological origin harbor genomic dystrophin deletions and/or loss of dystrophin expression, acquire the highest burden of genomic mutation, and are associated with worse survival. Homologous recombination defects lead to genome-wide mutational signatures, and a corresponding sensitivity to PARP trappers and other DNA damage response inhibitors, suggesting a promising therapeutic strategy for LMS. Finally, by phylogenetic reconstruction, we present evidence that clones seeding lethal metastases arise decades prior to LMS diagnosis.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease/genetics , Genomics/methods , Leiomyosarcoma/genetics , Muscle, Smooth/metabolism , Adult , Aged , Aged, 80 and over , Clonal Evolution , Cohort Studies , Female , Humans , Leiomyosarcoma/classification , Leiomyosarcoma/diagnosis , Male , Middle Aged , Muscle, Smooth/pathology , Mutation , RNA-Seq/methods , Survival Analysis
13.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33831375

ABSTRACT

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Subject(s)
Genetic Heterogeneity , Neoplasms/genetics , DNA Copy Number Variations , DNA, Neoplasm/chemistry , DNA, Neoplasm/metabolism , Databases, Genetic , Drug Resistance, Neoplasm/genetics , Humans , Neoplasms/pathology , Polymorphism, Single Nucleotide , Whole Genome Sequencing
14.
Cancer Discov ; 11(2): 340-361, 2021 02.
Article in English | MEDLINE | ID: mdl-33087317

ABSTRACT

Skin cancer risk varies substantially across the body, yet how this relates to the mutations found in normal skin is unknown. Here we mapped mutant clones in skin from high- and low-risk sites. The density of mutations varied by location. The prevalence of NOTCH1 and FAT1 mutations in forearm, trunk, and leg skin was similar to that in keratinocyte cancers. Most mutations were caused by ultraviolet light, but mutational signature analysis suggested differences in DNA-repair processes between sites. Eleven mutant genes were under positive selection, with TP53 preferentially selected in the head and FAT1 in the leg. Fine-scale mapping revealed 10% of clones had copy-number alterations. Analysis of hair follicles showed mutations in the upper follicle resembled adjacent skin, but the lower follicle was sparsely mutated. Normal skin is a dense patchwork of mutant clones arising from competitive selection that varies by location. SIGNIFICANCE: Mapping mutant clones across the body reveals normal skin is a dense patchwork of mutant cells. The variation in cancer risk between sites substantially exceeds that in mutant clone density. More generally, mutant genes cannot be assigned as cancer drivers until their prevalence in normal tissue is known.See related commentary by De Dominici and DeGregori, p. 227.This article is highlighted in the In This Issue feature, p. 211.


Subject(s)
Carcinoma, Basal Cell/genetics , Carcinoma, Squamous Cell/genetics , Skin Neoplasms/genetics , Adult , Aged , Cadherins/genetics , Carcinoma, Basal Cell/pathology , Carcinoma, Squamous Cell/pathology , Clone Cells , Female , Forearm , Humans , Leg , Male , Middle Aged , Mutation , Receptor, Notch1/genetics , Skin Neoplasms/pathology , Thorax
15.
Nature ; 587(7832): 126-132, 2020 11.
Article in English | MEDLINE | ID: mdl-32879494

ABSTRACT

Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.


Subject(s)
Chromosomal Instability/genetics , Evolution, Molecular , Karyotype , Neoplasm Metastasis/genetics , Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 8/genetics , Clone Cells/metabolism , Clone Cells/pathology , Cyclin E/genetics , DNA Copy Number Variations/genetics , Female , Humans , Loss of Heterozygosity/genetics , Male , Mutagenesis , Neoplasm Metastasis/pathology , Neoplasms/pathology , Oncogene Proteins/genetics
16.
Nat Genet ; 52(6): 604-614, 2020 06.
Article in English | MEDLINE | ID: mdl-32424351

ABSTRACT

During aging, progenitor cells acquire mutations, which may generate clones that colonize the surrounding tissue. By middle age, normal human tissues, including the esophageal epithelium (EE), become a patchwork of mutant clones. Despite their relevance for understanding aging and cancer, the processes that underpin mutational selection in normal tissues remain poorly understood. Here, we investigated this issue in the esophageal epithelium of mutagen-treated mice. Deep sequencing identified numerous mutant clones with multiple genes under positive selection, including Notch1, Notch2 and Trp53, which are also selected in human esophageal epithelium. Transgenic lineage tracing revealed strong clonal competition that evolved over time. Clone dynamics were consistent with a simple model in which the proliferative advantage conferred by positively selected mutations depends on the nature of the neighboring cells. When clones with similar competitive fitness collide, mutant cell fate reverts towards homeostasis, a constraint that explains how selection operates in normal-appearing epithelium.


Subject(s)
Esophagus/cytology , Mutation , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Animals , Cell Lineage , Diethylnitrosamine/toxicity , Epithelium/drug effects , Epithelium/pathology , Epithelium/physiology , Esophagus/physiology , Female , High-Throughput Nucleotide Sequencing , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Notch1/genetics , Receptor, Notch2/genetics , Reproducibility of Results , Tumor Suppressor Protein p53/genetics
17.
Nature ; 580(7805): 640-646, 2020 04.
Article in English | MEDLINE | ID: mdl-32350471

ABSTRACT

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry 'driver' mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.


Subject(s)
DNA Mutational Analysis , Endometrium/cytology , Endometrium/metabolism , Epithelium/metabolism , Health , Mutation , Adult , Age of Onset , Aged , Aged, 80 and over , Aging/genetics , Carcinogenesis/genetics , Clone Cells/cytology , Endometrial Neoplasms/genetics , Endometrium/pathology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelium/pathology , Female , Humans , Middle Aged , Parity/genetics , Time Factors , Young Adult
18.
Nat Genet ; 52(3): 306-319, 2020 03.
Article in English | MEDLINE | ID: mdl-32024998

ABSTRACT

About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.


Subject(s)
Carcinogenesis/genetics , Gene Rearrangement/genetics , Genome, Human/genetics , Long Interspersed Nucleotide Elements/genetics , Neoplasms/genetics , Retroelements/genetics , Humans , Neoplasms/pathology
19.
Nature ; 578(7793): 122-128, 2020 02.
Article in English | MEDLINE | ID: mdl-32025013

ABSTRACT

Cancer develops through a process of somatic evolution1,2. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes3. Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)4, we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma and isochromosome 17q in medulloblastoma. The mutational spectrum changes significantly throughout tumour evolution in 40% of samples. A nearly fourfold diversification of driver genes and increased genomic instability are features of later stages. Copy number alterations often occur in mitotic crises, and lead to simultaneous gains of chromosomal segments. Timing analyses suggest that driver mutations often precede diagnosis by many years, if not decades. Together, these results determine the evolutionary trajectories of cancer, and highlight opportunities for early cancer detection.


Subject(s)
Evolution, Molecular , Genome, Human/genetics , Neoplasms/genetics , DNA Repair/genetics , Gene Dosage , Genes, Tumor Suppressor , Genetic Variation , Humans , Mutagenesis, Insertional/genetics
20.
Nat Biotechnol ; 38(1): 97-107, 2020 01.
Article in English | MEDLINE | ID: mdl-31919445

ABSTRACT

Tumor DNA sequencing data can be interpreted by computational methods that analyze genomic heterogeneity to infer evolutionary dynamics. A growing number of studies have used these approaches to link cancer evolution with clinical progression and response to therapy. Although the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome analyses, standards for evaluating them are lacking. To address this need, we systematically assess methods for reconstructing tumor subclonality. First, we elucidate the main algorithmic problems in subclonal reconstruction and develop quantitative metrics for evaluating them. Then we simulate realistic tumor genomes that harbor all known clonal and subclonal mutation types and processes. Finally, we benchmark 580 tumor reconstructions, varying tumor read depth, tumor type and somatic variant detection. Our analysis provides a baseline for the establishment of gold-standard methods to analyze tumor heterogeneity.


Subject(s)
Algorithms , Neoplasms/pathology , Clone Cells , Computer Simulation , DNA Copy Number Variations/genetics , Gene Dosage , Genome , Humans , Mutation/genetics , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...