Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proteomics ; : e2300087, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059892

ABSTRACT

The sexually transmitted pathogen Neisseria gonorrhoeae releases membrane vesicles including outer membrane vesicles (OMVs) during infections. OMVs traffic outer membrane molecules, such as the porin PorB and lipo-oligosaccharide (LOS), into host innate immune cells, eliciting programmed cell death pathways, and inflammation. Little is known, however, about the proteome and LOS content of OMVs released by clinical strains isolated from different infection sites, and whether these vesicles similarly activate immune responses. Here, we characterized OMVs from four N. gonorrhoeae isolates and determined their size, abundance, proteome, LOS content, and activation of inflammatory responses in macrophages. The overall proteome of the OMVs was conserved between the four different isolates, which included major outer membrane and periplasm proteins. Despite this, we observed differences in the rate of OMV biogenesis and the relative abundance of membrane proteins and LOS. Consequently, OMVs from clinical isolates induced varying rates of macrophage cell death and the secretion of interleukin-1 family members, such as IL-1α and IL-1ß. Overall, these findings demonstrate that clinical isolates of N. gonorrhoeae utilize membrane vesicles to release proteins and lipids, which affects innate immune responses.

2.
EMBO Rep ; 24(11): e56865, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37846472

ABSTRACT

Programmed cell death pathways play an important role in innate immune responses to infection. Activation of intrinsic apoptosis promotes infected cell clearance; however, comparatively little is known about how this mode of cell death is regulated during infections and whether it can induce inflammation. Here, we identify that the pro-survival BCL-2 family member, A1, controls activation of the essential intrinsic apoptotic effectors BAX/BAK in macrophages and monocytes following bacterial lipopolysaccharide (LPS) sensing. We show that, due to its tight transcriptional and post-translational regulation, A1 acts as a molecular rheostat to regulate BAX/BAK-dependent apoptosis and the subsequent NLRP3 inflammasome-dependent and inflammasome-independent maturation of the inflammatory cytokine IL-1ß. Furthermore, induction of A1 expression in inflammatory monocytes limits cell death modalities and IL-1ß activation triggered by Neisseria gonorrhoeae-derived outer membrane vesicles (NOMVs). Consequently, A1-deficient mice exhibit heightened IL-1ß production in response to NOMV injection. These findings reveal that bacteria can induce A1 expression to delay myeloid cell death and inflammatory responses, which has implications for the development of host-directed antimicrobial therapeutics.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , bcl-2-Associated X Protein/metabolism , Myeloid Cells/metabolism , Cell Death , Interleukin-1beta/metabolism
3.
Elife ; 112022 01 27.
Article in English | MEDLINE | ID: mdl-35084330

ABSTRACT

The cell envelope of Gram-negative bacteria consists of two membranes surrounding a periplasm and peptidoglycan layer. Molecular machines spanning the cell envelope depend on spatial constraints and load-bearing forces across the cell envelope and surface. The mechanisms dictating spatial constraints across the cell envelope remain incompletely defined. In Escherichia coli, the coiled-coil lipoprotein Lpp contributes the only covalent linkage between the outer membrane and the underlying peptidoglycan layer. Using proteomics, molecular dynamics, and a synthetic lethal screen, we show that lengthening Lpp to the upper limit does not change the spatial constraint but is accommodated by other factors which thereby become essential for viability. Our findings demonstrate E. coli expressing elongated Lpp does not simply enlarge the periplasm in response, but the bacteria accommodate by a combination of tilting Lpp and reducing the amount of the covalent bridge. By genetic screening, we identified all of the genes in E. coli that become essential in order to enact this adaptation, and by quantitative proteomics discovered that very few proteins need to be up- or down-regulated in steady-state levels in order to accommodate the longer Lpp. We observed increased levels of factors determining cell stiffness, a decrease in membrane integrity, an increased membrane vesiculation and a dependance on otherwise non-essential tethers to maintain lipid transport and peptidoglycan biosynthesis. Further this has implications for understanding how spatial constraint across the envelope controls processes such as flagellum-driven motility, cellular signaling, and protein translocation.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Cell Survival/physiology , Escherichia coli Proteins/metabolism , Lipoproteins/metabolism , Periplasm/physiology , Cell Membrane/metabolism , Cell Wall , Escherichia coli/metabolism , Gram-Negative Bacteria/metabolism , Peptidoglycan , Protein Transport
4.
Microlife ; 3: uqac013, 2022.
Article in English | MEDLINE | ID: mdl-37223348

ABSTRACT

Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea. The treatment of gonorrhoea is becoming increasingly challenging, as N. gonorrhoeae has developed resistance to antimicrobial agents routinely used in the clinic. Resistance to penicillin is wide-spread partly due to the acquisition of ß-lactamase genes. How N. gonorrhoeae survives an initial exposure to ß-lactams before acquiring resistance genes remains to be understood. Here, using a panel of clinical isolates of N. gonorrhoeae we show that the ß-lactamase enzyme is packaged into outer membrane vesicles (OMVs) by strains expressing blaTEM-1B or blaTEM-106, which protects otherwise susceptible clinical isolates from the ß-lactam drug amoxycillin. We characterized the phenotypes of these clinical isolates of N. gonorrhoeae and the time courses over which the cross-protection of the strains is effective. Imaging and biochemical assays suggest that OMVs promote the transfer of proteins and lipids between bacteria. Thus, N. gonorrhoeae strains secret antibiotic degrading enzymes via OMVs enabling survival of otherwise susceptible bacteria.

5.
Trends Microbiol ; 29(12): 1106-1116, 2021 12.
Article in English | MEDLINE | ID: mdl-34001418

ABSTRACT

The programmed cell death pathways of pyroptosis and apoptosis protect mammals from infections. The activation of host cell death signaling depends on cell surface and cytosolic receptors that bind bacterial molecules or sense their activity. The formation of cytosolic protein complexes, such as the inflammasome and apoptosome, activates caspases, pore-forming proteins, and inflammatory cytokines. These pathways respond to bacteria and their released membrane vesicles. Outer membrane vesicles (OMVs) that emerge from the outer membrane of Gram-negative bacteria deliver a range of bacterial molecules, including lipids, proteins, polysaccharides and nucleic acids to host cells. Recent findings describe how OMV-associated molecules activate pyroptosis, apoptosis, and other inflammatory pathways. We discuss here how OMV-associated molecules are sensed by the immune system and how this contributes to infections and inflammatory diseases.


Subject(s)
Bacterial Outer Membrane , Extracellular Vesicles , Animals , Apoptosis , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/metabolism , Extracellular Vesicles/metabolism , Gram-Negative Bacteria/metabolism , Inflammasomes/metabolism , Mammals
6.
Nat Microbiol ; 5(11): 1418-1427, 2020 11.
Article in English | MEDLINE | ID: mdl-32807891

ABSTRACT

Sensing of microbes activates the innate immune system, depending on functional mitochondria. However, pathogenic bacteria inhibit mitochondrial activity by delivering toxins via outer membrane vesicles (OMVs). How macrophages respond to pathogenic microbes that target mitochondria remains unclear. Here, we show that macrophages exposed to OMVs from Neisseria gonorrhoeae, uropathogenic Escherichia coli and Pseudomonas aeruginosa induce mitochondrial apoptosis and NLRP3 inflammasome activation. OMVs and toxins that cause mitochondrial dysfunction trigger inhibition of host protein synthesis, which depletes the unstable BCL-2 family member MCL-1 and induces BAK-dependent mitochondrial apoptosis. In parallel with caspase-11-mediated pyroptosis, mitochondrial apoptosis and potassium ion efflux activate the NLRP3 inflammasome after OMV exposure in vitro. Importantly, in the in vivo setting, the activation and release of interleukin-1ß in response to N. gonorrhoeae OMVs is regulated by mitochondrial apoptosis. Our data highlight how innate immune cells sense infections by monitoring mitochondrial health.


Subject(s)
Apoptosis , Bacterial Outer Membrane/metabolism , Gram-Negative Bacteria/metabolism , Mitochondria/pathology , Animals , Extracellular Vesicles , Gram-Negative Bacteria/pathogenicity , Gram-Negative Bacterial Infections/immunology , Inflammation , Interleukin-1beta/metabolism , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Protein Biosynthesis , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism
7.
J Leukoc Biol ; 108(3): 967-981, 2020 09.
Article in English | MEDLINE | ID: mdl-32531864

ABSTRACT

Staphylococcus aureus causes necrotizing pneumonia by secreting toxins such as leukocidins that target front-line immune cells. The mechanism by which leukocidins kill innate immune cells and trigger inflammation during S. aureus lung infection, however, remains unresolved. Here, we explored human-induced pluripotent stem cell-derived macrophages (hiPSC-dMs) to study the interaction of the leukocidins Panton-Valentine leukocidin (PVL) and LukAB with lung macrophages, which are the initial leukocidin targets during S. aureus lung invasion. hiPSC-dMs were susceptible to the leukocidins PVL and LukAB and both leukocidins triggered NLPR3 inflammasome activation resulting in IL-1ß secretion. hiPSC-dM cell death after LukAB exposure, however, was only temporarily dependent of NLRP3, although NLRP3 triggered marked cell death after PVL treatment. CRISPR/Cas9-mediated deletion of the PVL receptor, C5aR1, protected hiPSC-dMs from PVL cytotoxicity, despite the expression of other leukocidin receptors, such as CD45. PVL-deficient S. aureus had reduced ability to induce lung IL-1ß levels in human C5aR1 knock-in mice. Unexpectedly, inhibiting NLRP3 activity resulted in increased wild-type S. aureus lung burdens. Our findings suggest that NLRP3 induces macrophage death and IL-1ß secretion after PVL exposure and controls S. aureus lung burdens.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Bacterial Toxins/antagonists & inhibitors , Exotoxins/antagonists & inhibitors , Induced Pluripotent Stem Cells/cytology , Leukocidins/antagonists & inhibitors , Macrophages/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/drug effects , Staphylococcus aureus , Animals , CD11b Antigen/immunology , CRISPR-Cas Systems , Cell Differentiation , Cells, Cultured , Exotoxins/deficiency , Gene Knock-In Techniques , Humans , Interleukin-1beta/metabolism , Leukocyte Common Antigens/physiology , Lung/immunology , Lung/microbiology , Macrophages/cytology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Monocytes/cytology , Peptide Fragments/immunology , Pneumonia, Staphylococcal/immunology , Protein Subunits , Receptor, Anaphylatoxin C5a/deficiency , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/physiology , Recombinant Proteins/metabolism , Staphylococcus aureus/physiology
8.
PLoS Pathog ; 14(3): e1006945, 2018 03.
Article in English | MEDLINE | ID: mdl-29601598

ABSTRACT

Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity.


Subject(s)
Apoptosis , Cell Membrane/metabolism , Gonorrhea/pathology , Macrophages/pathology , Mitochondria/pathology , Neisseria gonorrhoeae/pathogenicity , Porins/metabolism , Animals , Gonorrhea/microbiology , Humans , Macrophages/metabolism , Macrophages/microbiology , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/microbiology , Porins/genetics
9.
Cell Microbiol ; 18(4): 466-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26833712

ABSTRACT

Macrophages can respond to microbial infections with programmed cell death. The major cell death pathways of apoptosis, pyroptosis and necroptosis are tightly regulated to ensure adequate immune reactions to virulent and persistent invaders. Macrophage death eliminates the replicative niche of intracellular pathogens and induces immune attack. Not surprisingly, successful pathogens have evolved strategies to modulate macrophage cell death pathways to enable microbial survival and replication. Uncontrolled macrophage death can also lead to tissue damage, which may augment bacterial dissemination and pathology. In this review, we highlight how pathogens hijack macrophage cell death signals to promote microbial survival and immune evasion.


Subject(s)
Cell Death , Communicable Diseases/immunology , Host-Pathogen Interactions , Immune Evasion , Macrophages/microbiology , Macrophages/physiology , Animals , Communicable Diseases/pathology , Humans
10.
Clin Biochem ; 45(1-2): 106-11, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22138519

ABSTRACT

OBJECTIVES: To develop a duplex real-time TaqMan PCR assay for genotyping HLA-B*27 in the Chinese Han population. DESIGN AND METHODS: A standard curve was constituted to deduce amplification efficiency, dynamic range and detection limit of the duplex real-time TaqMan PCR assay, whereas PCR-SBT (PCR with sequence-based typing) was used to evaluate the accuracy of the assay. RESULTS: A linear standard curve for determining HLA-B*27 was obtained within the range of 10(1)-10(9) copies per reaction with the correlation coefficient of 0.99 and amplification efficiency of 98.30%. The detection limit was 3.09 copies per reaction. Complete concordance was found between the results obtained by the duplex real-time TaqMan PCR assay and PCR-SBT. Fifty-nine of the 178 genomic samples were HLA-B*27 positive and the other 119 were HLA-B*27 negative. CONCLUSIONS: The duplex real-time TaqMan PCR approach appears to be a reliable, sensitive, rapid and high-throughput method to genotype HLA-B*27 in the Chinese Han population.


Subject(s)
Genotype , HLA-B27 Antigen/genetics , Real-Time Polymerase Chain Reaction/methods , Adult , Aged , China , DNA Primers/genetics , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Spondylitis, Ankylosing/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...