Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Immunol ; 210(5): 547-557, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36637239

ABSTRACT

Prolidase deficiency (PD) is a multisystem disorder caused by mutations in the PEPD gene, which encodes a ubiquitously expressed metallopeptidase essential for the hydrolysis of dipeptides containing C-terminal proline or hydroxyproline. PD typically presents in childhood with developmental delay, skin ulcers, recurrent infections, and, in some patients, autoimmune features that can mimic systemic lupus erythematosus. The basis for the autoimmune association is uncertain, but might be due to self-antigen exposure with tissue damage, or indirectly driven by chronic infection and microbial burden. In this study, we address the question of causation and show that Pepd-null mice have increased antinuclear autoantibodies and raised serum IgA, accompanied by kidney immune complex deposition, consistent with a systemic lupus erythematosus-like disease. These features are associated with an accumulation of CD4 and CD8 effector T cells in the spleen and liver. Pepd deficiency leads to spontaneous T cell activation and proliferation into the effector subset, which is cell intrinsic and independent of Ag receptor specificity or antigenic stimulation. However, an increase in KLRG1+ effector CD8 cells is not observed in mixed chimeras, in which the autoimmune phenotype is also absent. Our findings link autoimmune susceptibility in PD to spontaneous T cell dysfunction, likely to be acting in combination with immune activators that lie outside the hemopoietic system but result from the abnormal metabolism or loss of nonenzymatic prolidase function. This knowledge provides insight into the role of prolidase in the maintenance of self-tolerance and highlights the importance of treatment to control T cell activation.


Subject(s)
Lupus Erythematosus, Systemic , Prolidase Deficiency , Animals , Mice , Autoimmunity , Lymphocyte Activation , Autoantigens
2.
Commun Biol ; 5(1): 1216, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357486

ABSTRACT

Peripheral tolerance prevents the initiation of damaging immune responses by autoreactive lymphocytes. While tolerogenic mechanisms are tightly regulated by antigen-dependent and independent signals, downstream pathways are incompletely understood. N-myc downstream-regulated gene 1 (NDRG1), an anti-cancer therapeutic target, has previously been implicated as a CD4+ T cell clonal anergy factor. By RNA-sequencing, we identified Ndrg1 as the third most upregulated gene in anergic, compared to naïve follicular, B cells. Ndrg1 is upregulated by B cell receptor activation (signal one) and suppressed by co-stimulation (signal two), suggesting that NDRG1 may be important in B cell tolerance. However, though Ndrg1-/- mice have a neurological defect mimicking NDRG1-associated Charcot-Marie-Tooth (CMT4d) disease, primary and secondary immune responses were normal. We find that B cell tolerance is maintained, and NDRG1 does not play a role in downstream responses during re-stimulation of in vivo antigen-experienced CD4+ T cells, demonstrating that NDGR1 is functionally redundant for lymphocyte anergy.


Subject(s)
Charcot-Marie-Tooth Disease , Refsum Disease , Mice , Animals , T-Lymphocytes , Refsum Disease/genetics , Refsum Disease/metabolism , Charcot-Marie-Tooth Disease/genetics , Immune Tolerance , Lymphocyte Activation
4.
Nat Immunol ; 21(11): 1408-1420, 2020 11.
Article in English | MEDLINE | ID: mdl-32868930

ABSTRACT

B lymphocyte development and selection are central to adaptive immunity and self-tolerance. These processes require B cell receptor (BCR) signaling and occur in bone marrow, an environment with variable hypoxia, but whether hypoxia-inducible factor (HIF) is involved is unknown. We show that HIF activity is high in human and murine bone marrow pro-B and pre-B cells and decreases at the immature B cell stage. This stage-specific HIF suppression is required for normal B cell development because genetic activation of HIF-1α in murine B cells led to reduced repertoire diversity, decreased BCR editing and developmental arrest of immature B cells, resulting in reduced peripheral B cell numbers. HIF-1α activation lowered surface BCR, CD19 and B cell-activating factor receptor and increased expression of proapoptotic BIM. BIM deletion rescued the developmental block. Administration of a HIF activator in clinical use markedly reduced bone marrow and transitional B cells, which has therapeutic implications. Together, our work demonstrates that dynamic regulation of HIF-1α is essential for normal B cell development.


Subject(s)
B-Lymphocytes/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lymphopoiesis/genetics , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Biomarkers , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunoglobulin Light Chains/genetics , Immunophenotyping , Mice , Mice, Knockout , RNA Editing , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Transcriptional Activation
5.
Proc Natl Acad Sci U S A ; 117(7): 3718-3727, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32019891

ABSTRACT

Developing B cells can be positively or negatively selected by self-antigens, but the mechanisms that determine these outcomes are incompletely understood. Here, we show that a B cell intrinsic switch between positive and negative selection during ontogeny is determined by a change from Lin28b to let-7 gene expression. Ectopic expression of a Lin28b transgene in murine B cells restored the positive selection of autoreactive B-1 B cells by self-antigen in adult bone marrow. Analysis of antigen-specific immature B cells in early and late ontogeny identified Lin28b-dependent genes associated with B-1 B cell development, including Arid3a and Bhleh41, and Lin28b-independent effects are associated with the presence or absence of self-antigen. These findings identify cell intrinsic and extrinsic determinants of B cell fate during ontogeny and reconcile lineage and selection theories of B cell development. They explain how changes in the balance of positive and negative selection may be able to adapt to meet the immunological needs of an individual during its lifetime.


Subject(s)
B-Lymphocytes/immunology , RNA-Binding Proteins/immunology , Animals , B-Lymphocytes/cytology , Cell Proliferation , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/immunology , RNA-Binding Proteins/genetics
6.
Nat Immunol ; 20(3): 350-361, 2019 03.
Article in English | MEDLINE | ID: mdl-30718914

ABSTRACT

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Subject(s)
Agammaglobulinemia/immunology , B-Lymphocytes/immunology , Cation Transport Proteins/immunology , Zinc/immunology , Agammaglobulinemia/genetics , Agammaglobulinemia/metabolism , Animals , B-Lymphocytes/metabolism , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , Child, Preschool , Cytosol/immunology , Cytosol/metabolism , Disease Models, Animal , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , Female , Gene Expression Profiling , Humans , Infant , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Pedigree , Zinc/metabolism
7.
Nature ; 560(7716): 122-127, 2018 08.
Article in English | MEDLINE | ID: mdl-30046110

ABSTRACT

53BP1 governs a specialized, context-specific branch of the classical non-homologous end joining DNA double-strand break repair pathway. Mice lacking 53bp1 (also known as Trp53bp1) are immunodeficient owing to a complete loss of immunoglobulin class-switch recombination1,2, and reduced fidelity of long-range V(D)J recombination3. The 53BP1-dependent pathway is also responsible for pathological joining events at dysfunctional telomeres4, and its unrestricted activity in Brca1-deficient cellular and tumour models causes genomic instability and oncogenesis5-7. Cells that lack core non-homologous end joining proteins are profoundly radiosensitive8, unlike 53BP1-deficient cells9,10, which suggests that 53BP1 and its co-factors act on specific DNA substrates. Here we show that 53BP1 cooperates with its downstream effector protein REV7 to promote non-homologous end joining during class-switch recombination, but REV7 is not required for 53BP1-dependent V(D)J recombination. We identify shieldin-a four-subunit putative single-stranded DNA-binding complex comprising REV7, c20orf196 (SHLD1), FAM35A (SHLD2) and FLJ26957 (SHLD3)-as the factor that explains this specificity. Shieldin is essential for REV7-dependent DNA end-protection and non-homologous end joining during class-switch recombination, and supports toxic non-homologous end joining in Brca1-deficient cells, yet is dispensable for REV7-dependent interstrand cross-link repair. The 53BP1 pathway therefore comprises distinct double-strand break repair activities within chromatin and single-stranded DNA compartments, which explains both the immunological differences between 53bp1- and Rev7- deficient mice and the context specificity of the pathway.


Subject(s)
DNA End-Joining Repair , DNA/chemistry , DNA/metabolism , Mad2 Proteins/metabolism , Multiprotein Complexes/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Line , DNA Breaks, Double-Stranded , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Female , Humans , Immunoglobulin Class Switching/genetics , Mad2 Proteins/deficiency , Mad2 Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Multiprotein Complexes/chemistry , Mutation , Tumor Suppressor p53-Binding Protein 1/deficiency , V(D)J Recombination/genetics
9.
Sci Rep ; 7: 40793, 2017 01 16.
Article in English | MEDLINE | ID: mdl-28091621

ABSTRACT

The thymus is known to atrophy during infections; however, a systematic study of changes in thymocyte subpopulations has not been performed. This aspect was investigated, using multi-color flow cytometry, during oral infection of mice with Salmonella Typhimurium (S. Typhimurium). The major highlights are: First, a block in the developmental pathway of CD4-CD8- double negative (DN) thymocytes is observed. Second, CD4+CD8+ double positive (DP) thymocytes, mainly in the DP1 (CD5loCD3lo) and DP2 (CD5hiCD3int), but not DP3 (CD5intCD3hi), subsets are reduced. Third, single positive (SP) thymocytes are more resistant to depletion but their maturation is delayed, leading to accumulation of CD24hiCD3hi SP. Kinetic studies during infection demonstrated differences in sensitivity of thymic subpopulations: Immature single positive (ISP) > DP1, DP2 > DN3, DN4 > DN2 > CD4+ > CD8+. Upon infection, glucocorticoids (GC), inflammatory cytokines, e.g. Ifnγ, etc are induced, which enhance thymocyte death. Treatment with RU486, the GC receptor antagonist, increases the survival of most thymic subsets during infection. Studies with Ifnγ-/- mice demonstrated that endogenous Ifnγ produced during infection enhances the depletion of DN2-DN4 subsets, promotes the accumulation of DP3 and delays the maturation of SP thymocytes. The implications of these observations on host cellular responses during infections are discussed.


Subject(s)
Disease Susceptibility , Glucocorticoids/metabolism , Interferon-gamma/metabolism , Salmonella Infections/immunology , Salmonella Infections/metabolism , Salmonella typhimurium/physiology , T-Lymphocyte Subsets/immunology , Thymocytes/immunology , Animals , Atrophy , Biomarkers , Cell Differentiation/immunology , Immunophenotyping , Lymphocyte Count , Mice , Salmonella Infections/microbiology , Salmonella Infections/pathology , Signal Transduction , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , Thymocytes/cytology , Thymocytes/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism , Thymus Gland/pathology
10.
Nat Immunol ; 18(2): 205-213, 2017 02.
Article in English | MEDLINE | ID: mdl-27992403

ABSTRACT

The positive and negative selection of lymphocytes by antigen is central to adaptive immunity and self-tolerance, yet how this is determined by different antigens is not completely understood. We found that thymocyte-selection-associated family member 2 (Themis2) increased the positive selection of B1 cells and germinal center B cells by self and foreign antigens. Themis2 lowered the threshold for B-cell activation by low-avidity, but not high-avidity, antigens. Themis2 constitutively bound the adaptor protein Grb2, src-kinase Lyn and signal transducer phospholipase γ2 (PLC-γ2), and increased activation of PLC-γ2 and its downstream pathways following B cell receptor stimulation. Our findings identify a unique function for Themis2 in differential signaling and provide insight into how B cells discriminate between antigens of different quantity and quality.


Subject(s)
B-Lymphocytes/physiology , Clonal Selection, Antigen-Mediated , Germinal Center/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Lymphocyte Activation , Adaptive Immunity , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , GRB2 Adaptor Protein/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phospholipase C gamma/metabolism , Receptors, Antigen, B-Cell/metabolism , Self Tolerance , src-Family Kinases/metabolism
11.
Proc Natl Acad Sci U S A ; 113(26): E3706-15, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27303042

ABSTRACT

Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt-Hogg-Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1 Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51-like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK.


Subject(s)
AMP-Activated Protein Kinases/metabolism , B-Lymphocytes/cytology , Cardiomyopathies/metabolism , Carrier Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism , AMP-Activated Protein Kinases/genetics , Animals , B-Lymphocytes/enzymology , B-Lymphocytes/metabolism , Cardiomyopathies/genetics , Carrier Proteins/metabolism , Cell Count , Humans , Mice , Mice, Inbred C57BL , Mutation , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics
12.
J Biophotonics ; 9(1-2): 67-82, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25808727

ABSTRACT

Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis.


Subject(s)
Sepsis/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Animals , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver/metabolism , Liver/microbiology , Mice , Mice, Inbred BALB C , Salmonella typhimurium/physiology , Sepsis/drug therapy , Sepsis/microbiology , Spleen/drug effects , Spleen/metabolism , Spleen/microbiology , Thioglycolates/pharmacology
13.
PLoS One ; 10(6): e0128301, 2015.
Article in English | MEDLINE | ID: mdl-26029930

ABSTRACT

Interferon-gamma (Ifnγ), a key macrophage activating cytokine, plays pleiotropic roles in host immunity. In this study, the ability of Ifnγ to induce the aggregation of resident mouse adherent peritoneal exudate cells (APECs), consisting primarily of macrophages, was investigated. Cell-cell interactions involve adhesion molecules and, upon addition of Ifnγ, CD11b re-localizes preferentially to the sites of interaction on APECs. A functional role of CD11b in enhancing aggregation is demonstrated using Reopro, a blocking reagent, and siRNA to Cd11b. Studies with NG-methyl-L-arginine (LNMA), an inhibitor of Nitric oxide synthase (Nos), NO donors, e.g., S-nitroso-N-acetyl-DL-penicillamine (SNAP) or Diethylenetriamine/nitric oxide adduct (DETA/NO), and Nos2-/- mice identified Nitric oxide (NO) induced by Ifnγ as a key regulator of aggregation of APECs. Further studies with Nos2-/- APECs revealed that some Ifnγ responses are independent of NO: induction of MHC class II and CD80. On the other hand, Nos2 derived NO is important for other functions: motility, phagocytosis, morphology and aggregation. Studies with cytoskeleton depolymerizing agents revealed that Ifnγ and NO mediate the cortical stabilization of Actin and Tubulin which contribute to aggregation of APECs. The biological relevance of aggregation of APECs was delineated using infection experiments with Salmonella Typhimurium (S. Typhimurium). APECs from orally infected, but not uninfected, mice produce high amounts of NO and aggregate upon ex vivo culture in a Nos2-dependent manner. Importantly, aggregated APECs induced by Ifnγ contain fewer intracellular S. Typhimurium compared to their single counterparts post infection. Further experiments with LNMA or Reopro revealed that both NO and CD11b are important for aggregation; in addition, NO is bactericidal. Overall, this study elucidates novel roles for Ifnγ and Nos2 in regulating Actin, Tubulin, CD11b, motility and morphology during the aggregation response of APECs. The implications of aggregation or "group behavior" of APECs are discussed in the context of host resistance to infectious organisms.


Subject(s)
Host-Pathogen Interactions/drug effects , Interferon-gamma/pharmacology , Nitric Oxide Synthase Type II/metabolism , Peritoneal Cavity/cytology , Salmonella typhimurium/physiology , Actins/metabolism , Animals , CD11b Antigen/metabolism , Cell Adhesion/drug effects , Cell Aggregation/drug effects , Cell Movement/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/microbiology , Macrophages/cytology , Macrophages/drug effects , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/deficiency , Peritoneal Cavity/microbiology , Protein Stability/drug effects , Tubulin/metabolism
14.
Eur J Immunol ; 44(1): 137-49, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24105651

ABSTRACT

Thymic atrophy, due to the depletion of CD4(+) CD8(+) thymocytes, is observed during infections with numerous pathogens. Several mechanisms, such as glucocorticoids and inflammatory cytokines, are known to be involved in this process; however, the roles of intracellular signaling molecules have not been investigated. In this study, the functional role of c-Jun NH2 -terminal kinase (JNK) during infection-induced thymic atrophy was addressed. The levels of phosphorylated JNK in immature CD4(+) CD8(+) thymocytes from C57BL/6 (Nramp-deficient) and 129/SvJ (Nramp-sufficient) mice were increased upon oral infection of mice with Salmonella enterica serovar Typhimurium (S. typhimurium). Furthermore, inhibition of JNK signaling, but not ERK or p38 MAPK, prevented the in vitro death of infected thymocytes. Importantly, the in vivo inhibition of JNK signaling with SP600125 protected C57BL/6 CD4(+) CD8(+) thymocytes from depletion via multiple mechanisms as follows: lower intracellular ROS, inflammatory cytokines, Bax and caspase 3 activity, increase in Bcl-xL amounts, and prevention of the loss in mitochondrial membrane potential. Notably, thymic architecture was preserved in infected mice treated with SP600125. Overall, this study identifies a novel role for JNK as a crucial regulator of the death of CD4(+) CD8(+) thymocytes during S. typhimurium infection.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , Salmonella typhi/immunology , Thymocytes/immunology , Thymus Gland/pathology , Typhoid Fever/immunology , Animals , Anthracenes/administration & dosage , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Caspase 3/metabolism , Cell Death/drug effects , Cells, Cultured , Cytokines/metabolism , Inflammation Mediators/metabolism , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism , Thymocytes/drug effects , Thymus Gland/drug effects
15.
J Infect Dis ; 207(10): 1556-68, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23431040

ABSTRACT

BACKGROUND: Interferon γ (IFN-γ) increases the expression of multiple genes and responses; however, the mechanisms by which IFN-γ downmodulates cellular responses is not well understood. In this study, the repression of CCL3 and CCL4 by IFN-γ and nitric oxide synthase 2 (NOS2) in macrophages and upon Salmonella typhimurium infection of mice was investigated. METHODS: Small molecule regulators and adherent peritoneal exudates cells (A-PECs) from Nos2(-/-)mice were used to identify the contribution of signaling molecules during IFN-γ-mediated in vitro regulation of CCL3, CCL4, and CXCL10. In addition, infection of bone marrow-derived macrophages (BMDMs) and mice (C57BL/6, Ifn-γ(-/), and Nos2(-/-)) with S. typhimurium were used to gain an understanding of the in vivo regulation of these chemokines. RESULTS: IFN-γ repressed CCL3 and CCL4 in a signal transducer and activator of transcription 1 (STAT1)-NOS2-p38 mitogen activated protein kinase (p38MAPK)-activating transcription factor 3 (ATF3) dependent pathway in A-PECs. Also, during intracellular replication of S. typhimurium in BMDMs, IFN-γ and NOS2 repressed CCL3 and CCL4 production. The physiological roles of these observations were revealed during oral infection of mice with S. typhimurium, wherein endogenous IFN-γ and NOS2 enhanced serum amounts of tumor necrosis factor α and CXCL10 but repressed CCL3 and CCL4. CONCLUSIONS: This study sheds novel mechanistic insight on the regulation of CCL3 and CCL4 in mouse macrophages and during S. typhimurium oral infection.


Subject(s)
Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Interferon-gamma/metabolism , Nitric Oxide Synthase Type II/metabolism , Salmonella Infections, Animal/immunology , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Animals , Chemokine CCL3/genetics , Chemokine CCL4/genetics , Chemokine CXCL10 , Gene Expression Regulation , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/genetics , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Stem Cells/metabolism , Tumor Necrosis Factor-alpha/blood , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Immunology ; 138(4): 307-21, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23186527

ABSTRACT

Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S. typhimurium). Significant death of CD4(+) CD8(+) thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4(+) CD8(+) thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon-γ (IFN-γ), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifnγ(-/-) mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN-γ and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifnγ(-/-) mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifnγ(-/-) mice. Importantly, the number of CD4(+) CD8(+) thymocytes is significantly higher in Ifnγ(-/-) mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN-γ-mediated pathways are parallel but synergize in an additive manner to induce death of CD4(+) CD8(+) thymocytes during S. typhimurium infection. The implications of this study for host responses during infection are discussed.


Subject(s)
Hydrocortisone/immunology , Interferon-gamma/immunology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Thymocytes/immunology , Thymus Gland/immunology , Animals , CD4 Antigens/genetics , CD4 Antigens/immunology , CD8 Antigens/genetics , CD8 Antigens/immunology , Caspase 3/genetics , Caspase 3/immunology , Cell Count , Cell Death/drug effects , Cell Death/immunology , Gene Expression Regulation/drug effects , Hormone Antagonists/pharmacology , Hydrocortisone/biosynthesis , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Mice , Mice, Knockout , Mifepristone/pharmacology , Receptors, Glucocorticoid/antagonists & inhibitors , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/mortality , Signal Transduction/drug effects , Stem Cells , Survival Rate , Thymocytes/microbiology , Thymocytes/pathology , Thymus Gland/microbiology , Thymus Gland/pathology
17.
PLoS One ; 7(9): e45521, 2012.
Article in English | MEDLINE | ID: mdl-23029070

ABSTRACT

Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/c mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/-) mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnfα and Ifnγ in sera are not significantly affected, Nos2(-/-) mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.


Subject(s)
Acetaminophen/adverse effects , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Spectroscopy, Fourier Transform Infrared , Acetaminophen/administration & dosage , Animals , Biomarkers/blood , Chemical and Drug Induced Liver Injury/blood , Cholesterol Esters/blood , Cholesterol Esters/metabolism , Cytokines/blood , Cytokines/metabolism , DNA/blood , DNA/metabolism , Glycogen/blood , Glycogen/metabolism , Kinetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Methionine/adverse effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...