Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Gastroenterology ; 162(7): 2018-2031, 2022 06.
Article in English | MEDLINE | ID: mdl-35216965

ABSTRACT

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) has a hypoxic, immunosuppressive stroma that contributes to its resistance to immune checkpoint blockade therapies. The hypoxia-inducible factors (HIFs) mediate the cellular response to hypoxia, but their role within the PDAC tumor microenvironment remains unknown. METHODS: We used a dual recombinase mouse model to delete Hif1α or Hif2α in α-smooth muscle actin-expressing cancer-associated fibroblasts (CAFs) arising within spontaneous pancreatic tumors. The effects of CAF HIF2α expression on tumor progression and composition of the tumor microenvironment were evaluated by Kaplan-Meier analysis, reverse transcription quantitative real-time polymerase chain reaction, histology, immunostaining, and by both bulk and single-cell RNA sequencing. CAF-macrophage crosstalk was modeled ex vivo using conditioned media from CAFs after treatment with hypoxia and PT2399, an HIF2 inhibitor currently in clinical trials. Syngeneic flank and orthotopic PDAC models were used to assess whether HIF2 inhibition improves response to immune checkpoint blockade. RESULTS: CAF-specific deletion of Hif2α, but not Hif1α, suppressed PDAC tumor progression and growth, and improved survival of mice by 50% (n = 21-23 mice/group, Log-rank P = .0009). Deletion of CAF-HIF2 modestly reduced tumor fibrosis and significantly decreased the intratumoral recruitment of immunosuppressive M2 macrophages and regulatory T cells. Treatment with the clinical HIF2 inhibitor PT2399 significantly reduced in vitro macrophage chemotaxis and M2 polarization, and improved tumor responses to immunotherapy in both syngeneic PDAC mouse models. CONCLUSIONS: Together, these data suggest that stromal HIF2 is an essential component of PDAC pathobiology and is a druggable therapeutic target that could relieve tumor microenvironment immunosuppression and enhance immune responses in this disease.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/pathology , Humans , Hypoxia/metabolism , Immune Checkpoint Inhibitors , Immunosuppression Therapy , Mice , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Pancreatic Neoplasms
2.
Mol Cancer Ther ; 18(12): 2381-2393, 2019 12.
Article in English | MEDLINE | ID: mdl-31395686

ABSTRACT

Distinct metabolic vulnerabilities of cancer cells compared with normal cells can potentially be exploited for therapeutic targeting. Deficiency of argininosuccinate synthetase-1 (ASS1) in pancreatic cancers creates auxotrophy for the semiessential amino acid arginine. We explored the therapeutic potential of depleting exogenous arginine via pegylated arginine deiminase (ADI-PEG20) treatment as an adjunct to radiotherapy. We evaluated the efficacy of treatment of human pancreatic cancer cell lines and xenografts with ADI-PEG20 and radiation via clonogenic assays and tumor growth delay experiments. We also investigated potential mechanisms of action using reverse-phase protein array, Western blotting, and IHC and immunofluorescence staining. ADI-PEG20 potently radiosensitized ASS1-deficient pancreatic cancer cells (MiaPaCa-2, Panc-1, AsPc-1, HPAC, and CaPan-1), but not ASS1-expressing cell lines (Bxpc3, L3.6pl, and SW1990). Reverse phase protein array studies confirmed increased expression of proteins related to endoplasmic reticulum (ER) stress and apoptosis, which were confirmed by Western blot analysis. Inhibition of ER stress signaling with 4-phenylbutyrate abrogated the expression of ER stress proteins and reversed radiosensitization by ADI-PEG20. Independent in vivo studies in two xenograft models confirmed significant tumor growth delays, which were associated with enhanced expression of ER stress proteins and apoptosis markers and reduced expression of proliferation and angiogenesis markers. ADI-PEG20 augmented the effects of radiation by triggering the ER stress pathway, leading to apoptosis in pancreatic tumor cells.


Subject(s)
Arginine/therapeutic use , Hydrolases/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/radiotherapy , Polyethylene Glycols/therapeutic use , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Hydrolases/pharmacology , Mice , Pancreatic Neoplasms/pathology , Polyethylene Glycols/pharmacology
3.
JCI Insight ; 52019 07 23.
Article in English | MEDLINE | ID: mdl-31335325

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth, however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to its oncogenicity, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a two-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared to vehicle. We found that the chief tumor suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitophagy/genetics , Pancreatic Neoplasms/metabolism , Animals , CRISPR-Cas Systems , Disease Models, Animal , Dynamins/antagonists & inhibitors , Dynamins/genetics , Enzyme Inhibitors/pharmacology , GTP Phosphohydrolases/genetics , Leflunomide/pharmacology , Mice , Mice, Knockout , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Oxidative Phosphorylation/drug effects , Quinazolinones/pharmacology , Survival Rate
4.
Cancer Res ; 79(9): 2327-2338, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043430

ABSTRACT

When pancreatic cancer cannot be removed surgically, patients frequently experience morbidity and death from progression of their primary tumor. Radiation therapy (RT) cannot yet substitute for an operation because radiation causes fatal bleeding and ulceration of the nearby stomach and intestines before achieving tumor control. There are no FDA-approved medications that prevent or reduce radiation-induced gastrointestinal injury. Here, we overcome this fundamental problem of anatomy and biology with the use of the oral EGLN inhibitor FG-4592, which selectively protects the intestinal tract from radiation toxicity without protecting tumors. A total of 70 KPC mice with autochthonous pancreatic tumors received oral FG-4592 or vehicle control ± ablative RT to a cumulative 75 Gy administered in 15 daily fractions to a limited tumor field. Although ablative RT reduced complications from local tumor progression, fatal gastrointestinal bleeding was observed in 56% of mice that received high-dose RT with vehicle control. However, radiation-induced bleeding was completely ameliorated in mice that received high-dose RT with FG-4592 (0% bleeding, P < 0.0001 compared with vehicle). Furthermore, FG-4592 reduced epithelial apoptosis by half (P = 0.002) and increased intestinal microvessel density by 80% compared with vehicle controls. EGLN inhibition did not stimulate cancer growth, as treatment with FG-4592 alone, or overexpression of HIF2 within KPC tumors independently improved survival. Thus, we provide a proof of concept for the selective protection of the intestinal tract by the EGLN inhibition to enable ablative doses of cytotoxic therapy in unresectable pancreatic cancer by reducing untoward morbidity and death from radiation-induced gastrointestinal bleeding. SIGNIFICANCE: Selective protection of the intestinal tract by EGLN inhibition enables potentially definitive doses of radiation therapy. This might allow radiation to be a surgical surrogate for unresectable pancreatic cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2327/F1.large.jpg.


Subject(s)
Glycine/analogs & derivatives , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Isoquinolines/pharmacology , Pancreatic Neoplasms/mortality , Radiation Injuries/prevention & control , Radiation-Protective Agents/pharmacology , Radiotherapy/mortality , Animals , Apoptosis , Female , Glycine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Proto-Oncogene Proteins p21(ras)/physiology , Radiation Injuries/etiology , Radiation Injuries/mortality , Radiotherapy/adverse effects , Transcription Factors/physiology , Tumor Suppressor Protein p53/physiology
5.
Sci Rep ; 9(1): 1949, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30760738

ABSTRACT

Unresectable pancreatic cancer is almost universally lethal because chemotherapy and radiation cannot completely stop the growth of the cancer. The major problem with using radiation to approximate surgery in unresectable disease is that the radiation dose required to ablate pancreatic cancer exceeds the tolerance of the nearby duodenum. WR-2721, also known as amifostine, is a well-known radioprotector, but has significant clinical toxicities when given systemically. WR-2721 is a prodrug and is converted to its active metabolite, WR-1065, by alkaline phosphatases in normal tissues. The small intestine is highly enriched in these activating enzymes, and thus we reasoned that oral administration of WR-2721 just before radiation would result in localized production of the radioprotective WR-1065 in the small intestine, providing protective benefits without the significant systemic side effects. Here, we show that oral WR-2721 is as effective as intraperitoneal WR-2721 in promoting survival of intestinal crypt clonogens after morbid irradiation. Furthermore, oral WR-2721 confers full radioprotection and survival after lethal upper abdominal irradiation of 12.5 Gy × 5 fractions (total of 62.5 Gy, EQD2 = 140.6 Gy). This radioprotection enables ablative radiation therapy in a mouse model of pancreatic cancer and nearly triples the median survival compared to controls. We find that the efficacy of oral WR-2721 stems from its selective accumulation in the intestine, but not in tumors or other normal tissues, as determined by in vivo mass spectrometry analysis. Thus, we demonstrate that oral WR-2721 is a well-tolerated, and quantitatively selective, radioprotector of the intestinal tract that is capable of enabling clinically relevant ablative doses of radiation to the upper abdomen without unacceptable gastrointestinal toxicity.


Subject(s)
Amifostine/pharmacology , Mercaptoethylamines/pharmacology , Radiation-Protective Agents/therapeutic use , Administration, Oral , Amifostine/metabolism , Animals , Female , Intestine, Small/drug effects , Male , Mercaptoethylamines/metabolism , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/drug therapy , Radiation Dosage , Radiation Protection/methods , Pancreatic Neoplasms
6.
Oncotarget ; 9(41): 26556-26571, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29899876

ABSTRACT

Tumor hypoxia is a well-recognized driver of resistance to traditional cancer therapies such as chemotherapy and radiation therapy. We describe development of a new nanoconstruct composed of gold nanorods (GNRs) conjugated to carbonic anhydrase IX (CAIX) antibody that specifically binds to CAIX, a biomarker of hypoxia, to facilitate targeting tumor hypoxic areas for focused photothermal ablation. Physicochemical characterization studies confirmed the size, shape, monodispersity, surface charge, and serum stability of the GNRs. Enzyme-linked immunosorbent assays and cellular binding and uptake studies confirmed successful conjugation of antibody to the GNRs and specificity for CAIX. Near-infrared irradiation of CAIX-overexpressing cells treated with GNR/anti-CAIX resulted in significantly higher cell death than cells treated with control GNRs. In vivo biodistribution studies using hyperspectral imaging and inductively coupled plasma mass spectrometry confirmed intravenous administration results not only in greater accumulation of GNR/anti-CAIX in tumors than control GNRs but also greater penetration into hypoxic areas of tumors. Near-infrared ablation of these tumors showed no tumor regression in the sham-treated group, regression but recurrence in the non-targeted-GNR group, and complete tumor regression in the targeted-GNR group. GNR/anti-CAIX nanoconstructs show promise as hypoxia targeting and photothermal ablation agents for cancer treatment.

7.
Cancer Med ; 4(1): 65-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25355701

ABSTRACT

Interaction between the epidermal growth factor receptor (EGFR) and the insulin-like growth factor receptor (IGF-1R) has been well established in many cancer types. We investigated the effects of cetuximab (EGFR antibody) and IMC-A12 (IGF-1R antibody) on the response of head and neck squamous cell carcinoma (HNSCC) to radiation therapy (RT). The effects of cetuximab and IMC-A12 on cell viability and radiosensitivity were determined by clonogenic cell survival assay. Formation of nuclear γ-H2AX and 53BP1 foci was monitored by immunofluorescence. Alterations in target signaling were analyzed by Western blots. In vivo tumor growth delay assay was performed to determine the efficacy of triple therapy with IMC-A12, cetuximab, and RT. In vitro data showed that cetuximab differentially affected the survival and the radiosensitivity of HNSCC cells. Cetuximab suppressed DNA repair that was evident by the prolonged presence of nuclear γ-H2AX and 53BP1 foci. IMC-A12 did not have any effect on the cell survival. However, it increased the radiosensitivity of one of the cell lines. EGFR inhibition increased IGF-1R expression levels and also the association between EGFR and IGF-1R. Addition of IMC-A12 to cetuximab did not increase the radiosensitivity of these cells. Tumor xenografts exhibited enhanced response to RT in the presence of either cetuximab or IMC-A12. Concurrent treatment regimen failed to further enhance the tumor response to cetuximab and/or RT. Taken together our data suggest that concomitant inhibition of both EGFR and IGF-1R pathways did not yield additional therapeutic benefit in overcoming resistance to RT.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , ErbB Receptors/metabolism , Head and Neck Neoplasms/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cetuximab , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Double-Stranded/radiation effects , Disease Models, Animal , ErbB Receptors/genetics , Gene Expression , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/therapy , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Protein Multimerization/drug effects , Radiation , Radiation Tolerance/drug effects , Radiotherapy , Receptor, IGF Type 1/genetics , Tumor Burden/drug effects , Tumor Burden/radiation effects , Tumor Suppressor p53-Binding Protein 1 , Xenograft Model Antitumor Assays
8.
Cancer Med ; 4(2): 278-92, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25450478

ABSTRACT

Locally advanced rectal cancers are treated with neoadjuvant chemoradiation therapy followed by surgery. In a minority (~20%) of patients, no tumor is present at the time of surgery; these patients with a complete pathologic response (pathCR) to neoadjuvant therapy have better treatment outcomes. Unfortunately, the inherent radioresistance of colorectal cancer (CRC) cells dictates that the majority of patients do not achieve a pathCR. Efforts to improve these odds have fueled the search for novel, relatively less-toxic radiosensitizers with distinct molecular mechanism(s) and broad-spectrum anticancer activities. Here, we use zerumbone, a sesquiterpene from the edible ginger (Zingiber zerumbet Smith), to enhance radiosensitivity of CRC cells. Short exposure to zerumbone (7 h) profoundly sensitized CRC cells, independent of their p53 or k-RAS status. Zerumbone enhanced radiation-induced cell cycle arrest (G2/M), increased radiation-induced apoptosis, but induced little apoptosis by itself. Zerumbone significantly enhanced radiation-induced DNA damage, as evident by delayed resolution of post-irradiation nuclear γH2AX foci, whereas zerumbone treatment alone did not induce γH2AX foci formation. Zerumbone pretreatment inhibited radiation-induced nuclear expression of DNA repair proteins ataxia-telangiectasia mutated (ATM) and DNA-PKcs. Interestingly, zerumbone-mediated radiosensitization did not involve reactive oxygen species (ROS), but was mediated through depletion of cellular glutathione (GSH). Ability of only thiol-based antioxidants to abrogate zerumbone-mediated radiosensitization further corroborated this hypothesis. The α,ß-unsaturated carbonyl group in zerumbone was found to be essential for its bioactivity as zerumbone analog α-Humulene that lacks this functional group, could neither radiosensitize CRC cells, nor deplete cellular GSH. Our studies elucidate novel mechanism(s) of zerumbone's ability to enhance CRC radiosensitivity.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Glutathione/metabolism , Radiation-Sensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Sesquiterpenes/pharmacology , Apoptosis , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , DNA Damage/drug effects , DNA Damage/radiation effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , HCT116 Cells , HT29 Cells , Humans , Oxidative Stress/drug effects , Radiation-Sensitizing Agents/chemistry , Sesquiterpenes/chemistry
9.
Nanomedicine (Lond) ; 9(8): 1209-22, 2014.
Article in English | MEDLINE | ID: mdl-24063415

ABSTRACT

AIM: We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. MATERIALS & METHODS: Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. RESULTS: Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. CONCLUSION: TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.


Subject(s)
Gold/therapeutic use , Nanoshells/therapeutic use , Pancreas/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/therapy , Acute-Phase Proteins/metabolism , Animals , Cell Line, Tumor , Contrast Media/chemistry , Contrast Media/therapeutic use , Drug Delivery Systems , Female , Fluorescent Dyes/chemistry , Fluorescent Dyes/therapeutic use , Gold/chemistry , Humans , Hyperthermia, Induced , Lipocalin-2 , Lipocalins/metabolism , Magnetic Resonance Imaging , Magnets/chemistry , Mice, Nude , Nanoshells/chemistry , Oncogene Proteins/metabolism , Optical Imaging , Pancreatic Neoplasms/pathology , Phototherapy
10.
Biomed Chromatogr ; 27(1): 58-66, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22522964

ABSTRACT

γ-Tocotrienol has attracted much attention owing to its multiple health benefits. This study developed and validated a simple, specific, sensitive and reliable LC/MS/MS method to analyze γ-tocotrienol in rat plasma. Plasma samples (50 µL) were extracted with internal standard solution (25 ng/mL of itraconazole) in acetonitrile (200 µL) with an average recovery of 44.7% and an average matrix effect of -2.9%. The separation of γ-tocotrienol and internal standard from the plasma components was achieved with a Waters XTerra® MS C(18) column with acetonitrile-water as mobile phase. Analysis was performed under positive ionization electrospray mass spectrometer via the multiple reaction monitoring. The standard curve was linear over a concentration range of 10-1000 ng/mL with correlation coefficient values >0.997. The method was validated with intra- and inter-day accuracy (relative error) ranging from 1.79 to 9.17% and from 2.16 to 9.66%, respectively, and precision (coefficient of variation) ranged from 1.94 to 9.25% and from 2.37 to 10.08%, respectively. Short-term stability, freeze-thaw stability and the processed sample stability tests were performed. This method was further applied to analyze γ-tocotrienol plasma concentrations in rats at various time points after administration of a 2 mg/kg single intravenous dose, and a pharmacokinetic profile was successfully obtained.


Subject(s)
Chromans/blood , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Vitamin E/analogs & derivatives , Animals , Chromans/chemistry , Chromans/pharmacokinetics , Drug Stability , Linear Models , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization , Vitamin E/blood , Vitamin E/chemistry , Vitamin E/pharmacokinetics
11.
Clin Cancer Res ; 18(18): 4942-53, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22832932

ABSTRACT

PURPOSE: Development of chemoresistance, poor prognosis, and metastasis often renders the current treatments for colorectal cancer (CRC) ineffective. Whether ursolic acid, a component of numerous medicinal plants, either alone or in combination with capecitabine, can inhibit the growth and metastasis of human CRC was investigated. EXPERIMENTAL DESIGN: The effect of ursolic acid on proliferation of CRC cell lines was examined by mitochondrial dye uptake assay, apoptosis by esterase staining, NF-κB activation by DNA-binding assay, and protein expression by Western blot. The effect of ursolic acid on the growth and chemosensitization was also examined in orthotopically implanted CRC in nude mice. RESULTS: We found that ursolic acid inhibited the proliferation of different colon cancer cell lines. This is correlated with inhibition of constitutive NF-κB activation and downregulation of cell survival (Bcl-xL, Bcl-2, cFLIP, and survivin), proliferative (cyclin D1), and metastatic (MMP-9, VEGF, and ICAM-1) proteins. When examined in an orthotopic nude mouse model, ursolic acid significantly inhibited tumor volume, ascites formation, and distant organ metastasis, and this effect was enhanced with capecitabine. Immunohistochemistry of tumor tissue indicated that ursolic acid downregulated biomarkers of proliferation (Ki-67) and microvessel density (CD31). This effect was accompanied by suppression of NF-κB, STAT3, and ß-catenin. In addition, ursolic acid suppressed EGF receptor (EGFR) and induced p53 and p21 expression. We also observed bioavailability of ursolic acid in the serum and tissue of animals. CONCLUSION: Overall, our results show that ursolic acid can inhibit the growth and metastasis of CRC and further enhance the therapeutic effects of capecitabine through the suppression of multiple biomarkers linked to inflammation, proliferation, invasion, angiogenesis, and metastasis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Signal Transduction/drug effects , Triterpenes/therapeutic use , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/toxicity , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis/drug effects , Capecitabine , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/toxicity , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Synergism , ErbB Receptors/metabolism , Fluorouracil/administration & dosage , Fluorouracil/analogs & derivatives , Fluorouracil/pharmacology , Fluorouracil/toxicity , Humans , Ki-67 Antigen/metabolism , Male , Mice , Mice, Nude , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Neoplasm Metastasis/drug therapy , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , STAT3 Transcription Factor/metabolism , Triterpenes/administration & dosage , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays , beta Catenin/metabolism , Ursolic Acid
12.
Int J Cancer ; 131(3): E292-303, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-21935918

ABSTRACT

Agents that can potentiate the efficacy of standard chemotherapy against pancreatic cancer are of great interest. Because of their low cost and safety, patients commonly use a variety of dietary supplements, although evidence of their efficacy is often lacking. One such commonly used food supplement is Zyflamend, a polyherbal preparation with potent anti-inflammatory activities and preclinical efficacy against prostate and oral cancer. Whether Zyflamend has any efficacy against human pancreatic cancer alone or in combination with gemcitibine, a commonly used agent, was examined in cell cultures and in an orthotopic mouse model. In vitro, Zyflamend inhibited the proliferation of pancreatic cancer cell lines regardless of p53 status and also enhanced gemcitabine-induced apoptosis. This finding correlated with inhibition of NF-κB activation by Zyflamend and suppression of cyclin D1, c-myc, COX-2, Bcl-2, IAP, survivin, VEGF, ICAM-1 and CXCR4. In nude mice, oral administration of Zyflamend alone significantly inhibited the growth of orthotopically transplanted human pancreatic tumors, and when combined with gemcitabine, further enhanced the antitumor effects. Immunohistochemical and Western blot analyses of tumor tissue showed that the suppression of pancreatic cancer growth correlated with inhibition of proliferation index marker (Ki-67), COX-2, MMP-9, NF-κB and VEGF. Overall, these results suggest that the concentrated multiherb product Zyflamend alone can inhibit the growth of human pancreatic tumors and, in addition, can sensitize pancreatic cancers to gemcitabine through the suppression of multiple targets linked to tumorigenesis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Plant Extracts/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/pharmacology , Drug Synergism , Gene Expression Regulation, Neoplastic , Humans , Ki-67 Antigen/analysis , Male , Mice , Mice, Nude , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Tumor Suppressor Protein p53/analysis , Xenograft Model Antitumor Assays , Gemcitabine
13.
Int J Nanomedicine ; 6: 259-69, 2011.
Article in English | MEDLINE | ID: mdl-21423588

ABSTRACT

PURPOSE: Gold nanoshells (NSs) have already shown great promise as photothermal actuators for cancer therapy. Integrin αvß3 is a marker that is specifically and preferentially overexpressed on multiple tumor types and on angiogenic tumor neovasculature. Active targeting of NSs to integrin αvß3 offers the potential to increase accumulation preferentially in tumors and thereby enhance therapy efficacy. METHODS: Enzyme-linked immunosorbent assay (ELISA) and cell binding assay were used to study the in vitro binding affinities of the targeted nanoconjugate NS-RGDfK. In vivo biodistribution and tumor specificity were analyzed using 64Cu-radiolabeled untargeted and targeted NSs in live nude rats bearing head and neck squamous cell carcinoma (HNSCC) xenografts. The potential thermal therapy applications of NS-RGDfK were evaluated by subablative thermal therapy of tumor xenografts using untargeted and targeted NSs. RESULTS: ELISA and cell binding assay confirmed the binding affinity of NS-RGDfK to integrin αvß3. Positron emission tomography/computed tomography imaging suggested that tumor targeting is improved by conjugation of NSs to cyclo(RGDfK) and peaks at ~20 hours postinjection. In the subablative thermal therapy study, greater biological effectiveness of targeted NSs was implied by the greater degree of tumor necrosis. CONCLUSION: The results presented in this paper set the stage for the advancement of integrin αvß3-targeted NSs as therapeutic nanoconstructs for effective cancer therapy.


Subject(s)
Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/radiotherapy , Integrin alphaVbeta3 , Nanoconjugates/chemistry , Peptides, Cyclic/pharmacology , Animals , Carcinoma, Squamous Cell/blood supply , Cell Line, Tumor , Copper Radioisotopes , Enzyme-Linked Immunosorbent Assay , Gold/chemistry , Hot Temperature , Humans , Hyperthermia, Induced/methods , Integrin alphaVbeta3/antagonists & inhibitors , Integrin alphaVbeta3/metabolism , Laser Therapy , Mice , Mice, Nude , Models, Animal , Nanoshells/chemistry , Protein Binding , Rats , Rats, Nude , Tissue Distribution , Tomography, Emission-Computed/methods , Transplantation, Heterologous
14.
Cancer Res ; 70(21): 8695-705, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20864511

ABSTRACT

Pancreatic cancers generally respond poorly to chemotherapy, prompting a need to identify agents that could sensitize tumors to treatment. In this study, we investigated the response of human pancreatic cells to γ-tocotrienol (γ-T3), a novel, unsaturated form of vitamin E found in palm oil and rice bran oil, to determine whether it could potentiate the effects of gemcitabine, a standard of care in clinical treatment of pancreatic cancer. γ-T3 inhibited the in vitro proliferation of pancreatic cancer cell lines with variable p53 status and potentiated gemcitabine-induced apoptosis. These effects correlated with an inhibition of NF-κB activation by γ-T3 and a suppression of key cellular regulators including cyclin D1, c-Myc, cyclooxygenase-2 (COX-2), Bcl-2, cellular inhibitor of apoptosis protein, survivin, vascular endothelial growth factor (VEGF), ICAM-1, and CXCR4. In an orthotopic nude mouse model of human pancreatic cancer, p.o. administration of γ-T3 inhibited tumor growth and enhanced the antitumor properties of gemcitabine. Immunohistochemical analysis indicated a correlation between tumor growth inhibition and reduced expression of Ki-67, COX-2, matrix metalloproteinase-9 (MMP-9), NF-κB p65, and VEGF in the tissue. Combination treatment also downregulated NF-κB activity along with the NF-κB-regulated gene products, such as cyclin D1, c-Myc, VEGF, MMP-9, and CXCR4. Consistent with an enhancement of tumor apoptosis, caspase activation was observed in tumor tissues. Overall, our findings suggest that γ-T3 can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing NF-κB-mediated inflammatory pathways linked to tumorigenesis.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Chromans/pharmacology , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm/drug effects , Inflammation/drug therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Vitamin E/analogs & derivatives , Animals , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Cyclooxygenase 2/metabolism , Deoxycytidine/pharmacology , Humans , Inflammation/immunology , Inflammation/pathology , Inflammation Mediators/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Nude , NF-kappa B/genetics , NF-kappa B/metabolism , Pancreatic Neoplasms/pathology , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Ribonucleotide Reductases/antagonists & inhibitors , Tumor Cells, Cultured , Vitamin E/pharmacology , Xenograft Model Antitumor Assays , Gemcitabine
15.
Biochem Pharmacol ; 80(12): 1904-14, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20599771

ABSTRACT

Although radiation therapy (RT) is an integral component of treatment of patients with many types of cancer, inherent and/or acquired resistance to the cytotoxic effects of RT is increasingly recognized as a significant impediment to effective cancer treatment. Inherent resistance is mediated by constitutively activated oncogenic, proliferative and anti-apoptotic proteins/pathways whereas acquired resistance refers to transient induction of proteins/pathways following radiation exposure. To realize the full potential of RT, it is essential to understand the signaling pathways that mediate inducible radiation resistance, a poorly characterized phenomenon, and identify druggable targets for radiosensitization. Ionizing radiation induces a multilayered signaling response in mammalian cells by activating many pro-survival pathways that converge to transiently activate a few important transcription factors (TFs), including nuclear factor kappa B (NF-κB) and signal transducers and activators of transcription (STATs), the central mediators of inflammatory and carcinogenic signaling. Together, these TFs activate a wide spectrum of pro-survival genes regulating inflammation, anti-apoptosis, invasion and angiogenesis pathways, which confer tumor cell radioresistance. Equally, radiation-induced activation of pro-inflammatory cytokine network (including interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α) has been shown to mediate symptom burden (pain, fatigue, local inflammation) in cancer patients. Thus, targeting radiation-induced inflammatory pathways may exert a dual effect of accentuating the tumor radioresponse and reducing normal tissue side-effects, thereby increasing the therapeutic window of cancer treatment. We review recent data demonstrating the pivotal role played by inflammatory pathways in cancer progression and modulation of radiation response.


Subject(s)
Neoplasms/radiotherapy , Radiation Tolerance , Animals , Cyclooxygenase 2/physiology , Cytokines/metabolism , Disease Progression , Humans , Inflammation/metabolism , Inflammation/prevention & control , Molecular Targeted Therapy , NF-kappa B/physiology , Neoplasms/immunology , Neoplasms/pathology , Radiation Injuries/prevention & control , Radiation Tolerance/drug effects , STAT Transcription Factors/physiology
16.
ACS Nano ; 4(7): 4131-41, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20586481

ABSTRACT

Nonspecific sequestration of nanoparticles by the reticulo-endothelial system (RES) results in the degradation of image quality of nanoparticle-based imaging. We demonstrate that gadolinium chloride (GdCl3) pretreatment inactivates RES macrophages, thereby increasing circulatory time and amplifying the tumor-specific signal of conjugated nanoparticles in vivo. The experimental results were validated using compartmental modeling, and the rate parameters for the observed kinetics pattern were estimated. This pretreatment strategy could have broad applicability across biomedical applications utilizing theranostic nanoparticles that are sequestered by the RES.


Subject(s)
Gadolinium/pharmacology , Molecular Imaging/methods , Neoplasms/metabolism , Quantum Dots , Animals , Biological Transport/drug effects , Cell Line, Tumor , ErbB Receptors/metabolism , Half-Life , Humans , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Kupffer Cells/pathology , Liver/pathology , Male , Mice , Models, Biological , Molecular Probes/metabolism , Molecular Probes/pharmacokinetics , Reproducibility of Results
17.
Pancreas ; 39(8): 1277-83, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20531243

ABSTRACT

OBJECTIVE: The intrinsic radioresistance of pancreatic cancer (PaCa) is caused by multiple oncogenic signaling pathways. In contrast to combining radiation therapy (RT) with targeted therapeutic agent(s) whose blockade can be circumvented by redundant signaling pathways, we evaluated the combination of RT with a broad-spectrum histone deacetylase inhibitor, vorinostat. METHODS: Radiosensitization by vorinostat was analyzed using clonogenic survival assays. Apoptosis was evaluated using flow cytometry and immunoblotting. DNA repair was evaluated using immunofluorescence assessment of histone 2AX phosphorylation and immunoblotting for DNA repair proteins. Prosurvival pathway proteins were measured by immunoblotting and electrophoretic mobility shift assays. RESULTS: Vorinostat significantly sensitized PaCa cells to radiation, but vorinostat-induced apoptosis did not contribute significantly to the observed radiosensitization. However, vorinostat inhibited DNA damage repair by targeting key DNA repair proteins and also abrogated prosurvival pathways responsible for PaCa aggressiveness and radioresistance. Specifically, the constitutively overexpressed epidermal growth factor receptor and nuclear factor κB pathways were shown to be induced by radiation and inhibited by vorinostat. CONCLUSIONS: Vorinostat augments the antitumor effects of RT by abrogating radioresistance responses of PaCa cells mediated by prosurvival and DNA repair pathways and promises to be a clinically relevant adjunct to RT for treatment of PaCa.


Subject(s)
Apoptosis/drug effects , DNA Repair/drug effects , Hydroxamic Acids/pharmacology , Signal Transduction/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Repair/radiation effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Electrophoretic Mobility Shift Assay , ErbB Receptors/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Humans , Immunoblotting , NF-kappa B/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Phosphorylation/radiation effects , Protein Binding , Radiation-Sensitizing Agents/pharmacology , Signal Transduction/radiation effects , Vorinostat
18.
Mol Cancer Ther ; 9(5): 1136-46, 2010 May.
Article in English | MEDLINE | ID: mdl-20442301

ABSTRACT

Protein kinase D (PKD) family members are increasingly implicated in multiple normal and abnormal biological functions, including signaling pathways that promote mitogenesis in pancreatic cancer. However, nothing is known about the effects of targeting PKD in pancreatic cancer. Our PKD inhibitor discovery program identified CRT0066101 as a specific inhibitor of all PKD isoforms. The aim of our study was to determine the effects of CRT0066101 in pancreatic cancer. Initially, we showed that autophosphorylated PKD1 and PKD2 (activated PKD1/2) are significantly upregulated in pancreatic cancer and that PKD1/2 are expressed in multiple pancreatic cancer cell lines. Using Panc-1 as a model system, we showed that CRT0066101 reduced bromodeoxyuridine incorporation; increased apoptosis; blocked neurotensin-induced PKD1/2 activation; reduced neurotensin-induced, PKD-mediated Hsp27 phosphorylation; attenuated PKD1-mediated NF-kappaB activation; and abrogated the expression of NF-kappaB-dependent proliferative and prosurvival proteins. We showed that CRT0066101 given orally (80 mg/kg/d) for 24 days significantly abrogated pancreatic cancer growth in Panc-1 subcutaneous xenograft model. Activated PKD1/2 expression in the treated tumor explants was significantly inhibited with peak tumor concentration (12 micromol/L) of CRT0066101 achieved within 2 hours after oral administration. Further, we showed that CRT0066101 given orally (80 mg/kg/d) for 21 days in Panc-1 orthotopic model potently blocked tumor growth in vivo. CRT0066101 significantly reduced Ki-67-positive proliferation index (P < 0.01), increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (P < 0.05), and abrogated the expression of NF-kappaB-dependent proteins including cyclin D1, survivin, and cIAP-1. Our results show for the first time that a PKD-specific small-molecule inhibitor CRT0066101 blocks pancreatic cancer growth in vivo and show that PKD is a novel therapeutic target in pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation/drug effects , Pancreatic Neoplasms/pathology , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Molecular Weight , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays
19.
Int J Radiat Oncol Biol Phys ; 75(2): 534-42, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19735878

ABSTRACT

PURPOSE: Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. METHODS AND MATERIALS: Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-kappaB (NF-kappaB) activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. RESULTS: Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-kappaB activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-kappaB activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of kappaB alpha, inhibition of inhibitor of kappaB kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-kappaB-regulated gene products (Bcl-2, Bcl-x(L), inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). CONCLUSIONS: Our results suggest that transient inducible NF-kappaB activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.


Subject(s)
Colorectal Neoplasms/radiotherapy , Curcumin/pharmacology , NF-kappa B/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Radiation Tolerance/physiology , Radiation-Sensitizing Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/radiotherapy , Colorectal Neoplasms/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , HT29 Cells , Humans , NF-kappa B/metabolism , NF-kappa B/radiation effects , Neoplasm Proteins/metabolism , Neoplasm Proteins/radiation effects , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Rectal Neoplasms/metabolism , Rectal Neoplasms/radiotherapy
20.
Int J Cancer ; 125(9): 2187-97, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19623659

ABSTRACT

Because of the poor prognosis and the development of resistance against chemotherapeutic drugs, the current treatment for advanced metastatic colorectal cancer (CRC) is ineffective. Whether curcumin (a component of turmeric) can potentiate the effect of capecitabine against growth and metastasis of CRC was investigated. The effect of curcumin on proliferation of CRC cell lines was examined by mitochondrial dye-uptake assay, apoptosis by esterase staining, nuclear factor-kappaB (NF-kappaB) by electrophoretic mobility shift assay and gene expression by Western blot analysis. The effect of curcumin on the growth and metastasis of CRC was also examined in orthotopically implanted tumors in nude mice. In vitro, curcumin inhibited the proliferation of human CRC cell lines, potentiated capecitabine-induced apoptosis, inhibited NF-kappaB activation and suppressed NF-kappaB-regulated gene products. In nude mice, the combination of curcumin and capecitabine was found to be more effective than either agent alone in reducing tumor volume (p = 0.001 vs. control; p = 0.031 vs. capecitabine alone), Ki-67 proliferation index (p = 0.001 vs. control) and microvessel density marker CD31. The combination treatment was also highly effective in suppressing ascites and distant metastasis to the liver, intestines, lungs, rectum and spleen. This effect was accompanied by suppressed expression of activated NF-kappaB and NF-kappaB-regulated gene products (cyclin D1,c-myc, bcl-2, bcl-xL, cIAP-1, COX-2, ICAM-1, MMP-9, CXCR4 and VEGF). Overall, our results suggest that curcumin sensitizes CRC to the antitumor and antimetastatic effects of capecitabine by suppressing NF-kappaB cell signaling pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Curcumin/pharmacology , Cyclin D1/genetics , Cyclooxygenase 2/genetics , Deoxycytidine/analogs & derivatives , Fluorouracil/analogs & derivatives , Gene Expression Regulation, Neoplastic/drug effects , Matrix Metalloproteinase 9/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Apoptosis/drug effects , Capecitabine , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Deoxycytidine/pharmacology , Drug Synergism , Fluorouracil/pharmacology , Humans , Male , Mice , NF-kappa B/antagonists & inhibitors , Neoplasm Metastasis/prevention & control , Receptors, CXCR4
SELECTION OF CITATIONS
SEARCH DETAIL
...