Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Cell Mol Immunol ; 21(4): 315-331, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443448

ABSTRACT

Natural killer (NK) cell-based immunotherapies are attracting increasing interest in the field of cancer treatment. Early clinical trials have shown promising outcomes, alongside satisfactory product efficacy and safety. Recent developments have greatly increased the therapeutic potential of NK cells by endowing them with enhanced recognition and cytotoxic capacities. This review focuses on surface receptor engineering in NK cell therapy and discusses its impact, challenges, and future directions.Most approaches are based on engineering with chimeric antigen receptors to allow NK cells to target specific tumor antigens independent of human leukocyte antigen restriction. This approach has increased the precision and potency of NK-mediated recognition and elimination of cancer cells. In addition, engineering NK cells with T-cell receptors also mediates the recognition of intracellular epitopes, which broadens the range of target peptides. Indirect tumor peptide recognition by NK cells has also been improved by optimizing immunoglobulin constant fragment receptor expression and signaling. Indeed, engineered NK cells have an improved ability to recognize and destroy target cells coated with specific antibodies, thereby increasing their antibody-dependent cellular cytotoxicity. The ability of NK cell receptor engineering to promote the expansion, persistence, and infiltration of transferred cells in the tumor microenvironment has also been explored. Receptor-based strategies for sustained NK cell functionality within the tumor environment have also been discussed, and these strategies providing perspectives to counteract tumor-induced immunosuppression.Overall, receptor engineering has led to significant advances in NK cell-based cancer immunotherapies. As technical challenges are addressed, these innovative treatments will likely reshape cancer immunotherapy.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Killer Cells, Natural , Immunotherapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive , Tumor Microenvironment
2.
Cell Death Differ ; 30(10): 2201-2212, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633969

ABSTRACT

Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers. Cancer stem cells (CSCs)/Tumor initiating cells (TICs) are hypothesized to be involved in clinical progression, tumor relapse and resistance. We found a significant correlation between netrin-1 expression and cancer stem cell (CSC) markers levels. We also show in different mice models of resistance to chemotherapies that netrin-1 interference using a therapeutic netrin-1 blocking antibody alleviates resistance to chemotherapy and triggers an efficient delay in tumor relapse and this effect is associated with CSCs loss. We also demonstrate that netrin-1 interference limits tumor resistance to immune checkpoint inhibitor and provide evidence linking this enhanced anti-tumor efficacy to a decreased recruitment of a subtype of myeloid-derived suppressor cells (MDSCs) called polymorphonuclear (PMN)-MDSCs. We have functionally demonstrated that these immune cells promote CSCs features and, consequently, resistance to anti-cancer treatments. Together, these data support the view of both a direct and indirect contribution of netrin-1 to cancer stemness and we propose that this may lead to therapeutic opportunities by combining conventional chemotherapies and immunotherapies with netrin-1 interfering drugs.

3.
Sci Adv ; 9(7): eadf3700, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36791198

ABSTRACT

T cell engineering has changed the landscape of cancer immunotherapy. Chimeric antigen receptor T cells have demonstrated a remarkable efficacy in the treatment of B cell malignancies in hematology. However, their clinical impact on solid tumors has been modest so far. T cells expressing an engineered T cell receptor (TCR-T cells) represent a promising therapeutic alternative. The target repertoire is not limited to membrane proteins, and intrinsic features of TCRs such as high antigen sensitivity and near-to-physiological signaling may improve tumor cell detection and killing while improving T cell persistence. In this review, we present the clinical results obtained with TCR-T cells targeting different tumor antigen families. We detail the different methods that have been developed to identify and optimize a TCR candidate. We also discuss the challenges of TCR-T cell therapies, including toxicity assessment and resistance mechanisms. Last, we share some perspectives and highlight future directions in the field.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Immunotherapy, Adoptive/methods , Neoplasms/metabolism , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm , Cell- and Tissue-Based Therapy
4.
Oncoimmunology ; 12(1): 2158013, 2023.
Article in English | MEDLINE | ID: mdl-36567802

ABSTRACT

Chimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells. Faced with these antagonistic conditions, radiotherapy (RT) has the potential to change the overall tumor landscape, from depleting tumor cells to reshaping the tumor microenvironment. In this article, we describe the current landscape and discuss how RT may play a pivotal role for enhancing the efficacy of adoptive T-cell therapies in solid tumors. Indeed, by improving homing, expansion and activation of infused T cells while reducing tumor volume and heterogeneity, the use of RT could help the implementation of engineered T cells in the treatment of solid tumors.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Neoplasms/radiotherapy , T-Lymphocytes , Tumor Microenvironment , Cell- and Tissue-Based Therapy
5.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: mdl-35803613

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) remains a very difficult disease to cure due to the persistence of leukemic stem cells (LSCs), which are resistant to different lines of chemotherapy and are the basis of refractory/relapsed (R/R) disease in 80% of patients with AML not receiving allogeneic transplantation. METHODS: In this study, we showed that the interleukin-1 receptor accessory protein (IL-1RAP) protein is overexpressed on the cell surface of LSCs in all subtypes of AML and confirmed it as an interesting and promising target in AML compared with the most common potential AML targets, since it is not expressed by the normal hematopoietic stem cell. After establishing the proof of concept for the efficacy of chimeric antigen receptor (CAR) T-cells targeting IL-1RAP in chronic myeloid leukemia, we hypothesized that third-generation IL-1RAP CAR T-cells could eliminate AML LSCs, where the medical need is not covered. RESULTS: We first demonstrated that IL-1RAP CAR T-cells can be produced from AML T-cells at the time of diagnosis and at relapse. In vitro and in vivo, we showed the effectiveness of IL-1RAP CAR T-cells against AML cell lines expressing different levels of IL-1RAP and the cytotoxicity of autologous IL-1RAP CAR T-cells against primary cells from patients with AML at diagnosis or at relapse. In patient-derived relapsed AML xenograft models, we confirmed that IL-1RAP CAR T-cells are able to circulate in peripheral blood and to migrate in the bone marrow and spleen, are cytotoxic against primary AML cells and increased overall survival. CONCLUSION: In conclusion, our preclinical results suggest that IL-1RAP CAR T-based adoptive therapy could be a promising strategy in AML treatment and it warrants the clinical investigation of this CAR T-cell therapy.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Immunotherapy , Interleukin-1 Receptor Accessory Protein/metabolism , Leukemia, Myeloid, Acute/therapy , Recurrence , T-Lymphocytes
6.
Eur J Cancer ; 171: 96-105, 2022 08.
Article in English | MEDLINE | ID: mdl-35714452

ABSTRACT

BACKGROUND: Cancer vaccines and T-cell receptor (TCR) engineered T cells (Tg-T cell) represent two different therapeutic strategies that can target the same tumour epitopes. The first approach requires the induction of a specific immune response in patients, while the second relies on the efficacy of adoptively transferred T cells. Because the ratio of antigen-specific T cells to tumour cells engaged by these strategies may influence the clinical outcome, we evaluated the efficacy of these two therapeutic approaches in solid tumours according to the tumour burden. METHODS: We performed a meta-analysis restricted to the therapeutic vaccine and Tg-T cell trials, presenting annotated individual clinical data. We adapted a previously published mathematical model for tumour immune dynamics to estimate the clinical impact of the number of specific T cells in regard to the tumour burden. RESULTS: A focused analysis of Tg-T cell studies revealed that clinical responses were mostly observed with the highest doses of infused T cells, suggesting that exceeding a threshold of effector T cells may be required for clinical efficacy. In silico modelling of cancer vaccine and Tg-T cell therapies starting at different tumour burdens showed that therapeutic vaccines control low or moderate tumour burdens, whereas increasing the amount of infused Tg-T cells succeeds in controlling high tumour masses. CONCLUSION: We propose that therapeutic vaccines should be considered in the context of low or moderate tumour burden, whereas Tg-T cell strategies may be more adapted for the treatment of advanced metastatic diseases.


Subject(s)
Cancer Vaccines , Neoplasms , Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive , Neoplasms/drug therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Tumor Burden
7.
Am J Hematol ; 97(9): 1200-1214, 2022 09.
Article in English | MEDLINE | ID: mdl-35759575

ABSTRACT

Human endogenous retroviruses (HERVs) represent 8% of the human genome. The expression of HERVs and their immune impact have not been extensively studied in Acute Myeloid Leukemia (AML). In this study, we used a reference of 14 968 HERV functional units to provide a thorough analysis of HERV expression in normal and AML bone marrow cells. We show that the HERV retrotranscriptome accurately characterizes normal and leukemic cell subpopulations, including leukemia stem cells, in line with different epigenetic profiles. We then show that HERV expression delineates AML subtypes with different prognoses. We finally propose a method to select and prioritize CD8+ T cell epitopes derived from AML-specific HERVs and we show that lymphocytes infiltrating patient bone marrow at diagnosis contain naturally occurring CD8+ T cells against these HERV epitopes. We also provide in vitro data supporting the functionality of HERV-specific CD8+ T-cells against AML cells. These results show that HERVs represent an important source of genetic information that can help enhancing disease stratification or biomarker identification and an important reservoir of alternative tumor-specific T cell epitopes relevant for cancer immunotherapy.


Subject(s)
Endogenous Retroviruses , Leukemia, Myeloid, Acute , CD8-Positive T-Lymphocytes , Endogenous Retroviruses/genetics , Epitopes, T-Lymphocyte , Humans , Immunotherapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Stem Cells
8.
Sci Adv ; 8(4): eabj3671, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35080970

ABSTRACT

Human endogenous retroviruses (HERVs) represent 8% of the human genome. HERV products may represent tumor antigens relevant for cancer immunotherapy. We developed a bioinformatic approach to identify shared CD8+ T cell epitopes derived from cancer-associated HERVs in solid tumors. Six candidates among the most commonly shared HLA-A2 epitopes with evidence of translation were selected for immunological evaluation. In vitro priming assays confirmed the immunogenicity of these epitopes, which induced high-avidity CD8+ T cell clones. These T cells specifically recognize and kill HLA-A2+ tumor cells presenting HERV epitopes on HLA molecules, as demonstrated by mass spectrometry. Furthermore, epitope-specific CD8+ T cells were identified by dextramer staining among tumor-infiltrating lymphocytes from HLA-A2+ patients with breast cancer. Last, we showed that HERV-specific T cells lyse patient-derived organoids. These shared virus-like epitopes are of major interest for the development of cancer vaccines or T cell-based immunotherapies, especially in tumors with low/intermediate mutational burden.


Subject(s)
Breast Neoplasms , Endogenous Retroviruses , Breast Neoplasms/genetics , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Female , HLA-A2 Antigen/genetics , Humans , Immunotherapy/methods
9.
Bull Cancer ; 108(10S): S73-S80, 2021 Oct.
Article in French | MEDLINE | ID: mdl-34920810

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy represents a major breakthrough in the field of hematology. "Off-the-shelf" allogeneic CAR T-cells from donors have many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches, possible standardization of the cell product, time for multiple cell modifications, redosing and decreased cost. However, allogeneic T-cells possess foreign immunological identities that can lead to graft-versus-host disease (GvHD) and their rejection by the host immune system. In this review, we describe the different approaches to produce allogeneic CAR T-cells with limited potential for GvHD and that can persist in the recipient. The preliminary clinical results obtained with the first generation of allogeneic CAR T-cells are presented as well as the perspectives in hematological malignancies and solid tumors.


Subject(s)
Allogeneic Cells/cytology , Graft vs Host Disease/prevention & control , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/transplantation , Allogeneic Cells/immunology , Biological Specimen Banks , Gene Editing/methods , Graft Rejection/immunology , Graft Rejection/prevention & control , Graft vs Host Disease/immunology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Histocompatibility Antigens Class I/immunology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Lymphocyte Depletion , Memory T Cells/immunology , Memory T Cells/transplantation , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology
10.
Bull Cancer ; 108(10S): S96-S108, 2021 Oct.
Article in French | MEDLINE | ID: mdl-34920813

ABSTRACT

In solid tumors, adoptive T cell therapies based on ex vivo amplification of antitumor T cell are represented by three main complementary approaches : (i) tumor infiltrating lymphocytes (TILs) which are amplified in vitro before reinjection to the patient, (ii) chimeric antigen receptor (CAR) engineered T cells and (iii) T cell receptor (TCR) engineered T cells. Despite encouraging results, some obstacles remain, such as optimal target selection and tumor microenvironment. In this Review, we discuss pros and cons of these different therapeutic strategies that may open new perspectives in the treatment of solid tumors.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/transplantation , Neoplasms/therapy , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/immunology , Antigens, Differentiation/immunology , Antigens, Neoplasm/immunology , Cell Engineering , Humans , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL