Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Viruses ; 16(3)2024 02 22.
Article in English | MEDLINE | ID: mdl-38543702

ABSTRACT

In the event of an outbreak of African swine fever (ASF) in pig farms, the European Union (EU) legislation requires the establishment of a restricted zone, consisting of a protection zone with a radius of at least 3 km and a surveillance zone with a radius of at least 10 km around the outbreak. The main purpose of the restricted zone is to stop the spread of the disease by detecting further outbreaks. We evaluated the effectiveness and necessity of the restricted zone in the Baltic States by looking at how many secondary outbreaks were detected inside and outside the protection and surveillance zones and by what means. Secondary outbreaks are outbreaks with an epidemiological link to a primary outbreak while a primary outbreak is an outbreak that is not epidemiologically linked to any previous outbreak. From 2014 to 2023, a total of 272 outbreaks in domestic pigs were confirmed, where 263 (96.7%) were primary outbreaks and 9 (3.3%) were secondary outbreaks. Eight of the secondary outbreaks were detected by epidemiological enquiry and one by passive surveillance. Epidemiological enquiries are legally required investigations on an outbreak farm to find out when and how the virus entered the farm and to obtain information on contact farms where the ASF virus may have been spread. Of the eight secondary outbreaks detected by epidemiological investigations, six were within the protection zone, one was within the surveillance zone and one outside the restricted zone. Epidemiological investigations were therefore the most effective means of detecting secondary outbreaks, whether inside or outside the restricted zones, while active surveillance was not effective. Active surveillance are legally prescribed activities carried out by the competent authorities in the restricted zones. Furthermore, as ASF is no longer a rare and exotic disease in the EU, it could be listed as a "Category B" disease, which in turn would allow for more flexibility and "tailor-made" control measures, e.g., regarding the size of the restricted zone.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Sus scrofa , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Baltic States
2.
Pathogens ; 12(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242393

ABSTRACT

In 2020, ASF occurred in wild boars throughout Latvia and Lithuania, and more than 21,500 animals were hunted and tested for the presence of the virus genome and antibodies in the framework of routine disease surveillance. The aim of our study was to re-examine hunted wild boars that tested positive for the antibodies and negative for the virus genome in the blood (n = 244) and to see if the virus genome can still be found in the bone marrow, as an indicator of virus persistence in the animal. Via this approach, we intended to answer the question of whether seropositive animals play a role in the spread of the disease. In total, 2 seropositive animals out of 244 were found to be positive for the ASF virus genome in the bone marrow. The results indicate that seropositive animals, which theoretically could also be virus shedders, can hardly be found in the field and thus do not play an epidemiological role regarding virus perpetuation, at least not in the wild boar populations we studied.

3.
Pathogens ; 12(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36839627

ABSTRACT

African swine fever (ASF) in domestic pigs has, since its discovery in Africa more than a century ago, been associated with subsistence pig keeping with low levels of biosecurity. Likewise, smallholder and backyard pig farming in resource-limited settings have been notably affected during the ongoing epidemic in Eastern Europe, Asia, the Pacific, and Caribbean regions. Many challenges to managing ASF in such settings have been identified in the ongoing as well as previous epidemics. Consistent implementation of biosecurity at all nodes in the value chain remains most important for controlling and preventing ASF. Recent research from Asia, Africa, and Europe has provided science-based information that can be of value in overcoming some of the hurdles faced for implementing biosecurity in resource-limited contexts. In this narrative review we examine a selection of these studies elucidating innovative solutions such as shorter boiling times for inactivating ASF virus in swill, participatory planning of interventions for risk mitigation for ASF, better understanding of smallholder pig-keeper perceptions and constraints, modified culling, and safe alternatives for disposal of carcasses of pigs that have died of ASF. The aim of the review is to increase acceptance and implementation of science-based approaches that increase the feasibility of managing, and the possibility to prevent, ASF in resource-limited settings. This could contribute to protecting hundreds of thousands of livelihoods that depend upon pigs and enable small-scale pig production to reach its full potential for poverty alleviation and food security.

4.
Viruses ; 15(2)2023 01 19.
Article in English | MEDLINE | ID: mdl-36851503

ABSTRACT

Classical swine fever (CSF) is one of the most important re-emergent swine diseases worldwide. Despite concerted control efforts in the Andean countries, the disease remains endemic in several areas, limiting production and trade opportunities. In this study, we aimed to determine the risk factors and spatiotemporal implications associated with CSF in Ecuador. We analysed passive surveillance and vaccination campaign datasets from 2014 to 2020; Then, we structured a herd-level case-control study using a logistic and spatiotemporal Bayesian model. The results showed that the risk factors that increased the odds of CSF occurrence were the following: swill feeding (OR 8.53), time until notification (OR 2.44), introduction of new pigs during last month (OR 2.01) and lack of vaccination against CSF (OR 1.82). The spatiotemporal model showed that vaccination reduces the risk by 33%. According to the priority index, the intervention should focus on Morona Santiago and Los Rios provinces. In conclusion, the results highlight the complexity of the CSF control programs, the importance to improve the overall surveillance system and the need to inform decision-makers and stakeholders.


Subject(s)
Classical Swine Fever , Animals , Swine , Classical Swine Fever/epidemiology , Ecuador/epidemiology , Bayes Theorem , Case-Control Studies , Risk Factors , Spatio-Temporal Analysis
5.
Front Vet Sci ; 9: 957918, 2022.
Article in English | MEDLINE | ID: mdl-36118335

ABSTRACT

The introduction of the African swine fever (ASF) into previously unaffected countries often overwhelms veterinary authorities with the resource demanding control efforts that need to be undertaken. The approach of implementing total stamping out of affected herds is taken as "default" control measure in many countries, regardless of the transboundary animal disease addressed, leading to a variety of challenges when implemented. Apart from the organizational challenges and high demand for human and financial resources, the total stamping out approach puts a high burden on the livelihoods of the affected farmers. After the spread of ASF throughout the country in 2019, Vietnam changed the culling approach enabling partial culling of only affected animals in the herd, in order to save resources, and reduce the environmental impact because of the carcass disposal and allow farmers to protect valuable assets. Until now, field data comparing these disease control options in their performance during implementation has not been evaluated scientifically. Analyzing the effect of the change in a control policy, the present study concludes that partial culling can on average save over 50% of total stock with an 8-day prolongation of the implementation of control measures. With 58% of farms undergoing partial culling scoring high on a time-livelihoods matrix, while total stamping out fails to score on livelihoods, much-needed clarity on the livelihood-protecting effects of alternative culling strategies is given. In the future, this will allow veterinary authorities to adjust control measures according to differing priorities, targeting peculiarities of ASF and acknowledging resource constraints faced.

6.
Pathogens ; 11(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745556

ABSTRACT

Veterinarians who have conducted numerous investigations of African swine fever outbreaks in pig farms in various European countries over the years shared their experiences during a workshop in Germany in early 2020. One focus was on the so-called "anecdotal information" obtained from farmers, farm workers or other lay people during the outbreak investigations. Discussions revolved around how to correctly interpret and classify such information and how the subjective character of the statements can influence follow-up examinations. The statements of the lay persons were grouped into three categories according to their plausibility: (i) statements that were plausible and prompted further investigation, (ii) statements that were not plausible and could therefore be ignored, and (iii) statements that were rather implausible but should not be ignored completely. The easiest to deal with were statements that could be classified without doubt as important and very plausible and statements that were not plausible at all. Particularly difficult to assess were statements that had a certain plausibility and could not be immediately dismissed out of hand. We aim to show that during outbreak investigations, one is confronted with human subjective stories that are difficult to interpret but still important to understand the overall picture. Here, we present and briefly discuss an arbitrary selection of reports made by lay persons during outbreak investigations.

7.
Transbound Emerg Dis ; 69(5): e3370-e3378, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35737577

ABSTRACT

To honour the 100 years anniversary of the first publication about African swine fever (ASF) a webinar with a particular focus on disease control in the smallholder sector was organized. This article is based on the webinar, summarizing the early history of ASF research, reflecting on the current global disease situation and bringing forward some suggestions that could contribute towards achieving control of ASF. The first description of ASF by R. Eustace Montgomery in 1921 laid the foundations for what we know about the disease today. Subsequent research confirmed its association with warthogs and soft ticks of the Ornithodoros moubata complex. During the latter half of the 21st century, exponential growth of pig production in Africa has led to a change in the ASF-epidemiology pattern. It is now dominated by a cycle involving domestic pigs and pork with virus spread driven by people. In 2007, a global ASF epidemic started, reaching large parts of Europe, Asia and the Americas. In Europe, this epidemic has primarily affected wild boar. In Asia, wild boar, smallholders and industrialized pig farms have been affected with impact on local, national and international pig value chains. Globally and historically, domestic pigs in smallholder settings are most frequently affected and the main driver of ASF virus transmission. Awaiting a safe and efficacious vaccine, we need to continue focus on other measures, such as biosecurity, for controlling the disease. However, smallholders face specific challenges linked to poverty and other structural factors in implementing biosecurity measures that can prevent spread. Improving biosecurity in the smallholder sector thus remains an important tool for preventing and controlling ASF. In this regard, interdisciplinary research can help to find new ways to promote safe practices, facilitate understanding and embrace smallholders' perspectives, engage stakeholders and adjust prevention and control policies to improve implementation.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Animals , Europe/epidemiology , Farms , Humans , Sus scrofa , Swine
8.
Transbound Emerg Dis ; 69(5): e2408-e2417, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35502726

ABSTRACT

In the case of African swine fever (ASF) outbreaks in pig farms, EU legislation requires a thorough epidemiological investigation to determine, among other tasks, the extent of infection in the affected farm. The main aim of this study was to implement a reliable sampling strategy to quickly obtain an overview of the extent of ASF virus spread in an affected pig farm. We developed and tested a three-step approach: (i) identification of sub-units within the affected farm, (ii) categorization of sub-units, and (iii) targeted selection of animals for testing. We used commercially available lateral flow devices (LFDs) to detect ASF antigen and antibodies under field conditions and compared them with routinely performed laboratory tests (qPCR, ELISA, IPT). The study was conducted in three commercial farms in Latvia that were affected by ASF in July 2020. One of the affected farms was relatively small with only 31 pigs, whereas the other two were large with 1800 and 9800 animals, respectively. The approach proved to be helpful and practical for efficient and reliably assess the ASF situation on the farm and to identify sub-units within a farm where infected animals are present and sub-units which might (still) be free of infection. This important epidemiological information helps to better estimate the high-risk period and to track the potential spread of infection outside the farm. It allows also to prioritize culling and, if appropriate, to pursue a partial culling strategy taking into account the absence of clinical signs, implemented biosecurity measures, quarantine and negative test results, among others. This might be of interest for large commercial farms where the infection was identified very early and has not yet spread widely. Due to its limited sensitivity, the antigen LFD test is useful for testing animals showing signs of disease.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/diagnosis , African Swine Fever/epidemiology , Animals , Antibodies , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Farms , Swine , Swine Diseases/epidemiology
10.
Viruses ; 13(9)2021 08 30.
Article in English | MEDLINE | ID: mdl-34578300

ABSTRACT

The introduction of genotype II African swine fever (ASF) virus, presumably from Africa into Georgia in 2007, and its continuous spread through Europe and Asia as a panzootic disease of suids, continues to have a huge socio-economic impact. ASF is characterized by hemorrhagic fever leading to a high case/fatality ratio in pigs. In Europe, wild boar are especially affected. This review summarizes the currently available knowledge on ASF in wild boar in Europe. The current ASF panzootic is characterized by self-sustaining cycles of infection in the wild boar population. Spill-over and spill-back events occur from wild boar to domestic pigs and vice versa. The social structure of wild boar populations and the spatial behavior of the animals, a variety of ASF virus (ASFV) transmission mechanisms and persistence in the environment complicate the modeling of the disease. Control measures focus on the detection and removal of wild boar carcasses, in which ASFV can remain infectious for months. Further measures include the reduction in wild boar density and the limitation of wild boar movements through fences. Using these measures, the Czech Republic and Belgium succeeded in eliminating ASF in their territories, while the disease spread in others. So far, no vaccine is available to protect wild boar or domestic pigs reliably against ASF.


Subject(s)
African Swine Fever Virus/pathogenicity , African Swine Fever/epidemiology , Sus scrofa/virology , African Swine Fever Virus/genetics , Animals , Disease Outbreaks , Europe/epidemiology , Swine
11.
EFSA J ; 19(7): e06708, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34354766

ABSTRACT

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for peste des petits ruminants (PPR). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radii of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radii of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period of 21 days was assessed as effective, except for the first affected establishments detected, where 33 days is recommended. It was concluded that beyond the protection (3 km) and the surveillance zones (10 km) only 9.6% (95% CI: 3.1-25.8%) and 2.3% (95% CI: 1-5.5%) of the infections from an affected establishment may occur, respectively. This may be considered sufficient to contain the disease spread (95% probability of containing transmission corresponds to 5.3 km). Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad-hoc requests in relation to PPR.

12.
Vet Med Sci ; 7(6): 2273-2279, 2021 11.
Article in English | MEDLINE | ID: mdl-34378334

ABSTRACT

African swine fever (ASF) was diagnosed for the first time in Romania in a backyard holding in Satu-Mare County in July 2017. Since then, more than 3800 outbreaks occurred in the entire country. Disease control strategies in the backyard sector rely almost exclusively on reactive measures implemented upon appearance of clinical signs and laboratory confirmation of ASF. In our descriptive study, infection course and outbreak investigation data of 56 affected backyard holdings in Satu-Mare County has been investigated. Early disease detection based on clinical signs appeared to be efficient. In the majority of outbreaks, ASF was detected within the first 2 weeks after the estimated virus introduction. A clinical phase of 2-8 days was observed before pigs either succumbed to the disease or control measures were implemented on affected farms. A moderate on-farm transmissibility of ASF virus between pigs was observed. Four clusters of outbreaks were identified indicating virus perpetuation and transmission from farm to farm. To suspend infection chains, rapid intervention by isolating affected farms combined with effective biosecurity measures is required. However, due to the backyard peculiarities, quick and effective implementation of control measures has shown to be rather difficult.


Subject(s)
African Swine Fever Virus , African Swine Fever , Horse Diseases , Swine Diseases , African Swine Fever/prevention & control , Animals , Disease Outbreaks/veterinary , Farms , Female , Horse Diseases/epidemiology , Horses , Romania/epidemiology , Swine , Swine Diseases/epidemiology
13.
EFSA J ; 19(6): e06675, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188717

ABSTRACT

The European Commission requested that EFSA provide study designs for the investigation of four research domains according to major gaps in knowledge identified by EFSA in a report published in 2019: i) the patterns of seasonality of African Swine Fever (ASF) in wild boar and domestic pigs in the EU; ii) the epidemiology of ASF in wild boar; iii) survival of ASF virus (ASFV) in the environment and iv) transmission of ASFV by vectors. In this Scientific Opinion, the third research domain on ASFV survival is addressed. Nine research objectives were proposed by the working group and broader ASF expert networks, such as ASF stop, ENETWILD, VectorNet, AHAW network and the AHAW Panel Experts. Of the nine research objectives, only one was prioritised and elaborated into a general protocol/study design research proposal, pertaining ASFV survival in feed and bedding. To investigate the survival of ASFV in feed, bedding and roughage, laboratory survival studies are proposed. To investigate possible risk mitigation measures, proof-of-concept approaches should be investigated.

14.
EFSA J ; 19(6): e06676, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188718

ABSTRACT

The European Commission requested that EFSA provide study designs for the investigation of four research domains according to major gaps in knowledge identified by EFSA in a report published in 2019: (i) the patterns of seasonality of African Swine Fever (ASF) in wild boar and domestic pigs in the EU; (ii) the epidemiology of ASF in wild boar; (iii) survival of ASF virus (ASFV) in the environment and (iv) transmission of ASFV by vectors. In this Scientific Opinion, the fourth research domain on ASFV transmission by vectors is addressed. Eleven research objectives were proposed by the EFSA working group and broader ASF expert networks, such as ASF stop, ENETWILD, VectorNet, AHAW network and the AHAW Panel Experts. Of the 11 research objectives, six were prioritised based on the following set of criteria: (1) the impact on ASF management; (2) the feasibility or practicality to carry out the study; (3) the potential implementation of study results in practice; (4) a possible short time-frame study (< 1 year); (5) the novelty of the study and (6) if it was a priority for risk managers. The prioritised research objectives were: (I) Studies on the potential vector fauna at the pig-wild boar interface and the feeding preference of blood-feeding potential vectors in ASF-affected areas; (II) Assessment of the efficacy of insect screens on indoor/outdoor pig holdings to prevent the entry of blood-sucking vectors (i.e. Stomoxys) in ASF endemic areas; (III) Assess the role of mechanical vectors in the virus transmission in ASF-affected areas; (IV) Distribution of the potential mechanical transmission vectors in ASF-affected areas of the EU; (V) ASFV transmission by synanthropic birds; and (VI) Assessment on the presence/absence of the soft tick Ornithodoros erraticus in ASF-affected areas in Europe. For each of the selected research objectives, a research protocol has been proposed considering the potential impact on ASF management and the period of 1 year for the research activities.

15.
Front Vet Sci ; 8: 637487, 2021.
Article in English | MEDLINE | ID: mdl-33842576

ABSTRACT

African swine fever (ASF) is one of the most threatening diseases for the pig farming sector worldwide. Prevention, control and eradication remain a challenge, especially in the absence of an effective vaccine or cure and despite the relatively low contagiousness of this pathogen in contrast to Classical Swine Fever or Foot and Mouth disease, for example. Usually lethal in pigs and wild boar, this viral transboundary animal disease has the potential to significantly disrupt global trade and threaten food security. This paper outlines the importance of a disease-specific legal framework, based on the latest scientific evidence in order to improve ASF control. It compares the legal basis for ASF control in a number of pig-producing regions globally, considering diverse production systems, taking into account current scientific evidence in relation to ASF spread and control. We argue that blanket policies that do not take into account disease-relevant characteristics of a biological agent, nor the specifics under which the host species are kept, can hamper disease control efforts and may prove disproportionate.

16.
EFSA J ; 19(4): e06550, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33897870

ABSTRACT

The European Commission requested EFSA to provide study designs for the investigation of four research domains according to major gaps in knowledge identified by EFSA in a report published in 2019: i) the patterns of seasonality of ASF in wild boar and domestic pigs in the EU; ii) the ASF epidemiology in wild boar; iii) ASF virus (ASFV) survival in the environment and iv) ASF transmission by vectors. In this Scientific Opinion, the first research domain on ASF seasonality is addressed. Therefore, five research objectives were proposed by the working group and broader ASF expert networks, such as ASF stop, ENETWILD, VectorNet, AHAW network and the AHAW Panel Experts. Of the five research objectives, only two were prioritised and elaborated into a general protocol/study design research proposal, namely: 1) to monitor the herd incidence of ASF outbreaks in EU Member States (MS) and 2) to investigate potential (seasonal) risk factors for ASF incursion in domestic pig herds of different herd types and/or size. To monitor the incidence in different pig herd types, it is advised to collect, besides ASF surveillance data, pig population data describing at least the following parameters per farm from the first moment of incursion in an affected MS: the numbers of pigs (e.g. number of breeding pigs sows and boars, weaners and fatteners) and the location and the type of farm (including details on the level of biosecurity implemented on the farm and the outdoor/indoor production). We suggest collecting data from all ASF-affected MS through the SIGMA data model, which was developed for this purpose. To investigate potential risk factors for ASF incursion in domestic pig herds, we suggest a matched case-control design. Such a study design can be run either retrospectively or prospectively. The collected data on the pig herds and the ASF surveillance data in the SIGMA data model can be used to identify case and control farms.

17.
EFSA J ; 19(3): e06419, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33717352

ABSTRACT

EFSA assessed the role of seropositive wild boar in African swine fever (ASF) persistence. Surveillance data from Estonia and Latvia investigated with a generalised equation method demonstrated a significantly slower decline in seroprevalence in adult animals compared with subadults. The seroprevalence in adults, taking more than 24 months to approach zero after the last detection of ASFV circulation, would be a poor indicator to demonstrate the absence of virus circulation. A narrative literature review updated the knowledge on the mortality rate, the duration of protective immunity and maternal antibodies and transmission parameters. In addition, parameters potentially leading to prolonged virus circulation (persistence) in wild boar populations were reviewed. A stochastic explicit model was used to evaluate the dynamics of virus prevalence, seroprevalence and the number of carcasses attributed to ASF. Secondly, the impact of four scenarios on the duration of ASF virus (ASFV) persistence was evaluated with the model, namely a: (1) prolonged, lifelong infectious period, (2) reduction in the case-fatality rate and prolonged transient infectiousness; (3) change in duration of protective immunity and (4) change in the duration of protection from maternal antibodies. Only the lifelong infectious period scenario had an important prolonging effect on the persistence of ASF. Finally, the model tested the performance of different proposed surveillance strategies to provide evidence of the absence of virus circulation (Exit Strategy). A two-phase approach (Screening Phase, Confirmation Phase) was suggested for the Exit Strategy. The accuracy of the Exit Strategy increases with increasing numbers of carcasses collected and tested. The inclusion of active surveillance based on hunting has limited impact on the performance of the Exit Strategy compared with lengthening of the monitoring period. This performance improvement should be reasonably balanced against an unnecessary prolonged 'time free' with only a marginal gain in performance. Recommendations are provided for minimum monitoring periods leading to minimal failure rates of the Exit Strategy. The proposed Exit Strategy would fail with the presence of lifelong infectious wild boar. That said, it should be emphasised that the existence of such animals is speculative, based on current knowledge.

18.
EFSA J ; 19(1): e06402, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33552298

ABSTRACT

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for African Swine Fever (ASF). In this opinion, EFSA and the AHAW Panel of experts reviewed the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, specific details of the model used for the assessment of the laboratory sampling procedures for ASF are presented here. Here, also, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. In summary, several sampling procedures as described in the diagnostic manual for ASF were considered ineffective and a suggestion to exclude, or to substitute with more effective procedures was made. The monitoring period was assessed as non-effective for several scenarios and a longer monitoring period was suggested to ensure detection of potentially infected herds. It was demonstrated that the surveillance zone comprises 95% of the infections from an affected establishment, and therefore is considered effective. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to ASF.

19.
EFSA J ; 19(2): e06403, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33552302

ABSTRACT

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for African Horse Sickness (AHS). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum duration of measures in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, specific details of the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures were assessed were designed and agreed prior to the start of the assessment. In summary, sampling procedures described in the diagnostic manual for AHS were considered efficient for all Equidae considering the high case fatality rate expected. The monitoring period (14 days) was assessed as effective in every scenario, except for those relating to the epidemiological enquiry where the risk manager should consider increasing the monitoring period, based on the awareness of keepers, environmental conditions and the vector abundance in the region. The current protection zone (100 km) comprises more than 95% of the infections from an affected establishment. Both the radius and duration of the zones could be reduced, based on local environmental conditions and the time of year of the first index case. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation relating to AHS.

20.
EFSA J ; 19(1): e06372, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33488812

ABSTRACT

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Highly Pathogenic Avian Influenza (HPAI). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, specific details of the model used for the assessment of the laboratory sampling procedures for HPAI are presented here. Here, also, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. In summary, sampling procedures as described in the diagnostic manual for HPAI were considered efficient for gallinaceous poultry, whereas additional sampling is advised for Anseriformes. The monitoring period was assessed as effective, and it was demonstrated that the surveillance zone comprises 95% of the infections from an affected establishment. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to HPAI.

SELECTION OF CITATIONS
SEARCH DETAIL
...