Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 14(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38673065

ABSTRACT

Oxidative stress plays an important role in neurodegenerative diseases, including glaucoma. Therefore, we analyzed if the antioxidant coenzyme Q10 (CoQ10), which is also commercially available, can prevent retinal degeneration induced by hydrogen peroxide (H2O2) in a porcine organ culture model. Retinal explants were cultivated for eight days, and H2O2 (500 µM, 3 h) induced the oxidative damage. CoQ10 therapy was applied (700 µM, 48 h). Retinal ganglion cells (RGCs) and microglia were examined immunohistologically in all groups (control, H2O2, H2O2 + CoQ10). Cellular, oxidative, and inflammatory genes were quantified via RT-qPCR. Strong RGC loss was observed with H2O2 (p ≤ 0.001). CoQ10 elicited RGC protection compared to the damaged group at a histological (p ≤ 0.001) and mRNA level. We detected more microglia cells with H2O2, but CoQ10 reduced this effect (p = 0.004). Cellular protection genes (NRF2) against oxidative stress were stimulated by CoQ10 (p ≤ 0.001). Furthermore, mitochondrial oxidative stress (SOD2) increased through H2O2 (p = 0.038), and CoQ10 reduced it to control level. Our novel results indicate neuroprotection via CoQ10 in porcine retina organ cultures. In particular, CoQ10 appears to protect RGCs by potentially inhibiting apoptosis-related pathways, activating intracellular protection and reducing mitochondrial stress.

2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38255979

ABSTRACT

Glaucoma is a complex and multifactorial disease defined as the loss of retinal ganglion cells (RGCs) and their axons. Besides an elevated intraocular pressure (IOP), other mechanisms play a pivotal role in glaucoma onset and progression. For example, it is known that excitotoxicity, immunological alterations, ischemia, and oxidative stress contribute to the neurodegeneration in glaucoma disease. To study these effects and to discover novel therapeutic approaches, appropriate animal models are needed. In this review, we focus on various glaucoma animal models beyond an elevated IOP. We introduce genetically modified mice, e.g., the optineurin E50K knock-in or the glutamate aspartate transporter (GLAST)-deficient mouse. Excitotoxicity can be mimicked by injecting the glutamate analogue N-methyl-D-aspartate intravitreally, which leads to rapid RGC degeneration. To explore the contribution of the immune system, the experimental autoimmune glaucoma model can serve as a useful tool. Here, immunization with antigens led to glaucoma-like damage. The ischemic mechanism can be mimicked by inducing a high IOP for a certain amount of time in rodents, followed by reperfusion. Thereby, damage to the retina and the optic nerve occurs rapidly after ischemia/reperfusion. Lastly, we discuss the importance of optic nerve crush models as model systems for normal-tension glaucoma. In summary, various glaucoma models beyond IOP increase can be utilized.


Subject(s)
Glaucoma , Animals , Mice , Eye , Glutamic Acid , Models, Animal , Ischemia
3.
Cells ; 10(12)2021 12 18.
Article in English | MEDLINE | ID: mdl-34944083

ABSTRACT

Considering the fact that many retinal diseases are yet to be cured, the pathomechanisms of these multifactorial diseases need to be investigated in more detail. Among others, oxidative stress and hypoxia are pathomechanisms that take place in retinal diseases, such as glaucoma, age-related macular degeneration, or diabetic retinopathy. In consideration of these diseases, it is also evidenced that the immune system, including the complement system and its activation, plays an important role. Suitable models to investigate neuroretinal diseases are organ cultures of porcine retina. Based on an established model, the role of the complement system was studied after the induction of oxidative stress or hypoxia. Both stressors led to a loss of retinal ganglion cells (RGCs) accompanied by apoptosis. Hypoxia activated the complement system as noted by higher C3+ and MAC+ cell numbers. In this model, activation of the complement cascade occurred via the classical pathway and the number of C1q+ microglia was increased. In oxidative stressed retinas, the complement system had no consideration, but strong inflammation took place, with elevated TNF, IL6, and IL8 mRNA expression levels. Together, this study shows that hypoxia and oxidative stress induce different mechanisms in the porcine retina inducing either the immune response or an inflammation. Our findings support the thesis that the immune system is involved in the development of retinal diseases. Furthermore, this study is evidence that both approaches seem suitable models to investigate undergoing pathomechanisms of several neuroretinal diseases.


Subject(s)
Complement Activation/immunology , Complement Pathway, Classical/immunology , Hypoxia/immunology , Retina/immunology , Retina/pathology , Retinal Ganglion Cells/pathology , Animals , Apoptosis/drug effects , Cobalt/toxicity , Complement Activation/drug effects , Complement Pathway, Alternative/drug effects , Complement Pathway, Alternative/immunology , Complement Pathway, Classical/drug effects , Complement System Proteins/metabolism , Hydrogen Peroxide/toxicity , Lectins/metabolism , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Oxidative Stress/drug effects , Retinal Ganglion Cells/drug effects , Retinal Neurons/drug effects , Retinal Neurons/pathology , Stress, Physiological/drug effects , Swine
4.
Front Immunol ; 12: 759389, 2021.
Article in English | MEDLINE | ID: mdl-35140707

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) are antibody mediated CNS disorders mostly affecting the optic nerve and spinal cord with potential severe impact on the visual pathway. Here, we investigated inflammation and degeneration of the visual system in a spontaneous encephalomyelitis animal model. We used double-transgenic (2D2/Th) mice which develop a spontaneous opticospinal encephalomyelitis (OSE). Retinal morphology and its function were evaluated via spectral domain optical coherence tomography (SD-OCT) and electroretinography (ERG) in 6- and 8-week-old mice. Immunohistochemistry of retina and optic nerve and examination of the retina via RT-qPCR were performed using markers for inflammation, immune cells and the complement pathway. OSE mice showed clinical signs of encephalomyelitis with an incidence of 75% at day 38. A progressive retinal thinning was detected in OSE mice via SD-OCT. An impairment in photoreceptor signal transmission occurred. This was accompanied by cellular infiltration and demyelination of optic nerves. The number of microglia/macrophages was increased in OSE optic nerves and retinas. Analysis of the retina revealed a reduced retinal ganglion cell number and downregulated Pou4f1 mRNA expression in OSE retinas. RT-qPCR revealed an elevation of microglia markers and the cytokines Tnfa and Tgfb. We also documented an upregulation of the complement system via the classical pathway. In summary, we describe characteristics of inflammation and degeneration of the visual system in a spontaneous encephalomyelitis model, characterized by coinciding inflammatory and degenerative mechanisms in both retina and optic nerve with involvement of the complement system.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis/pathology , Neuromyelitis Optica/pathology , Optic Nerve Injuries/pathology , Optic Nerve/pathology , Optic Neuritis/pathology , Retina/pathology , Animals , Disease Models, Animal , Inflammation/metabolism , Inflammation/pathology , Mice , Myelin-Oligodendrocyte Glycoprotein/metabolism , Retinal Ganglion Cells/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , Tomography, Optical Coherence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...