Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineered ; 15(1): 2294160, 2024 12.
Article in English | MEDLINE | ID: mdl-38131141

ABSTRACT

Microalgae are capable of generating numerous metabolites that possess notable biological activities and hold substantial promise for various industrial applications. Nevertheless, the taxonomic diversity of these photosynthetic microorganisms has not received thorough investigation. Using the 18S rRNA encoding gene, a recently discovered strain originating from the Tunisian coast (the governorate of Mahdia) was identified as a member of the Porphyridium genus. The growth response as well as the metabolite accumulation of Porphyridium sp. to different culture media (Pm, F/2, and Hemerick) was investigated over a period of 52 days. The highest biomass production was recorded with Pm medium (2 × 107 cell/mL). The apparent growth rates (µ) and the doubling time (Dt) were about 0.081 day-1 and 12.34 days, respectively. The highest chlorophyll a (0.678 ± 0.005 pg/cell), total carotenoids (0.18 ± 0.003 pg/cell), phycoerythrin (3.88 ± 0.003 pg/cell), and proteins (14.58 ± 0.35 pg/cell) contents were observed with F/2 medium. Cultivating Porphyridium sp. in both F/2 and Hemerick media yielded similar levels of starch accumulation. The Hemerick medium has proven to be the most suitable for the production of lipids (2.23% DW) and exopolysaccharides (5.41 ± 0.56 pg/cell).


Subject(s)
Microalgae , Porphyridium , Porphyridium/genetics , Porphyridium/metabolism , Chlorophyll A/metabolism , Starch , Photosynthesis , Biomass , Microalgae/metabolism
2.
Mar Drugs ; 21(8)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37623721

ABSTRACT

Phycobiliproteins are photosynthetic light-harvesting pigments isolated from microalgae with fluorescent, colorimetric and biological properties, making them a potential commodity in the pharmaceutical, cosmetic and food industries. Hence, improving their metabolic yield is of great interest. In this regard, the present review aimed, first, to provide a detailed and thorough overview of the optimization of culture media elements, as well as various physical parameters, to improve the large-scale manufacturing of such bioactive molecules. The second section of the review offers systematic, deep and detailed data about the current main features of phycobiliproteins. In the ultimate section, the health and nutritional claims related to these bioactive pigments, explaining their noticeable potential for biotechnological uses in various fields, are examined.


Subject(s)
Microalgae , Biotechnology , Coloring Agents , Commerce , Phycobiliproteins
3.
Biomolecules ; 12(7)2022 06 24.
Article in English | MEDLINE | ID: mdl-35883441

ABSTRACT

Microalgae are photoautotrophic microorganisms known as producers of a large variety of metabolites. The taxonomic diversity of these microorganisms has been poorly explored. In this study, a newly isolated strain was identified based on the 18S rRNA encoding gene. The phylogenetic analysis showed that the isolated strain was affiliated with the Rhodomonas genus. This genus has greatly attracted scientific attention according to its capacity to produce a large variety of metabolites, including phycoerythrin. Growth and phycoerythrin production conditions were optimized using a Plackett-Burman design and response surface methodology. An expression profile analysis of the cpeB gene, encoding the beta subunit of phycoerythrin, was performed by qRT-PCR under standard and optimized culture conditions. The optimization process showed that maximum cell abundance was achieved under the following conditions: CaCl2 = 2.1328 g/L, metal solution = 1 mL/L, pH = 7 and light intensity = 145 µmol photons/m2/s, whereas maximum phycoerythrin production level occurred when CaCl2 = 1.8467 g/L, metal solution = 1 mL/L, pH = 7 and light intensity = 157 µmol/m2/s. In agreement, positive transcriptional regulation of the cpeB gene was demonstrated using qRT-PCR. This study showed the successful optimization of abiotic conditions for highest growth and phycoerythrin production, making Rhodomonas sp. suitable for several biotechnological applications.


Subject(s)
Microalgae , Phycoerythrin , Biomass , Calcium Chloride/metabolism , Microalgae/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...