Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Eur Radiol ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38355986

ABSTRACT

OBJECTIVE: Immunotherapy has dramatically altered the therapeutic landscape for oncology, but more research is needed to identify patients who are likely to achieve durable clinical benefit and those who may develop unacceptable side effects. We investigated the role of artificial intelligence in PET/SPECT-guided approaches for immunotherapy-treated patients. METHODS: We performed a scoping review of MEDLINE, CENTRAL, and Embase databases using key terms related to immunotherapy, PET/SPECT imaging, and AI/radiomics through October 12, 2022. RESULTS: Of the 217 studies identified in our literature search, 24 relevant articles were selected. The median (interquartile range) sample size of included patient cohorts was 63 (157). Primary tumors of interest were lung (n = 14/24, 58.3%), lymphoma (n = 4/24, 16.7%), or melanoma (n = 4/24, 16.7%). A total of 28 treatment regimens were employed, including anti-PD-(L)1 (n = 13/28, 46.4%) and anti-CTLA-4 (n = 4/28, 14.3%) monoclonal antibodies. Predictive models were built from imaging features using univariate radiomics (n = 7/24, 29.2%), radiomics (n = 12/24, 50.0%), or deep learning (n = 5/24, 20.8%) and were most often used to prognosticate (n = 6/24, 25.0%) or describe tumor phenotype (n = 5/24, 20.8%). Eighteen studies (75.0%) performed AI model validation. CONCLUSION: Preliminary results suggest broad potential for the application of AI-guided immunotherapy management after further validation of models on large, prospective, multicenter cohorts. CLINICAL RELEVANCE STATEMENT: This scoping review describes how artificial intelligence models are built to make predictions based on medical imaging and explores their application specifically in the PET and SPECT examination of immunotherapy-treated cancers. KEY POINTS: • Immunotherapy has drastically altered the cancer treatment landscape but is known to precipitate response patterns that are not accurately accounted for by traditional imaging methods. • There is an unmet need for better tools to not only facilitate in-treatment evaluation but also to predict, a priori, which patients are likely to achieve a good response with a certain treatment as well as those who are likely to develop side effects. • Artificial intelligence applied to PET/SPECT imaging of immunotherapy-treated patients is mainly used to make predictions about prognosis or tumor phenotype and is built from baseline, pre-treatment images. Further testing is required before a true transition to clinical application can be realized.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38399425

ABSTRACT

The integration of artificial intelligence (AI) and positron emission tomography (PET) imaging has the potential to become a powerful tool in drug discovery. This review aims to provide an overview of the current state of research and highlight the potential for this alliance to advance pharmaceutical innovation by accelerating the development and deployment of novel therapeutics. We previously performed a scoping review of three databases (Embase, MEDLINE, and CENTRAL), identifying 87 studies published between 2018 and 2022 relevant to medical imaging (e.g., CT, PET, MRI), immunotherapy, artificial intelligence, and radiomics. Herein, we reexamine the previously identified studies, performing a subgroup analysis on articles specifically utilizing AI and PET imaging for drug discovery purposes in immunotherapy-treated oncology patients. Of the 87 original studies identified, 15 met our updated search criteria. In these studies, radiomics features were primarily extracted from PET/CT images in combination (n = 9, 60.0%) rather than PET imaging alone (n = 6, 40.0%), and patient cohorts were mostly recruited retrospectively and from single institutions (n = 10, 66.7%). AI models were used primarily for prognostication (n = 6, 40.0%) or for assisting in tumor phenotyping (n = 4, 26.7%). About half of the studies stress-tested their models using validation sets (n = 4, 26.7%) or both validation sets and test sets (n = 4, 26.7%), while the remaining six studies (40.0%) either performed no validation at all or used less stringent methods such as cross-validation on the training set. Overall, the integration of AI and PET imaging represents a paradigm shift in drug discovery, offering new avenues for more efficient development of therapeutics. By leveraging AI algorithms and PET imaging analysis, researchers could gain deeper insights into disease mechanisms, identify new drug targets, or optimize treatment regimens. However, further research is needed to validate these findings and address challenges such as data standardization and algorithm robustness.

3.
Cancers (Basel) ; 15(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958353

ABSTRACT

[18F]-FDG positron emission tomography with computed tomography (PET/CT) imaging is widely used to enhance the quality of care in patients diagnosed with cancer. Furthermore, it holds the potential to offer insight into the synergic effect of combining radiation therapy (RT) with immuno-oncological (IO) agents. This is achieved by evaluating treatment responses both at the RT and distant tumor sites, thereby encompassing the phenomenon known as the abscopal effect. In this context, PET/CT can play an important role in establishing timelines for RT/IO administration and monitoring responses, including novel patterns such as hyperprogression, oligoprogression, and pseudoprogression, as well as immune-related adverse events. In this commentary, we explore the incremental value of PET/CT to enhance the combination of RT with IO in precision therapy for solid tumors, by offering supplementary insights to recently released joint guidelines.

4.
Diagnostics (Basel) ; 13(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37998619

ABSTRACT

Standard-of-care medical imaging techniques such as CT, MRI, and PET play a critical role in managing patients diagnosed with metastatic cutaneous melanoma. Advancements in artificial intelligence (AI) techniques, such as radiomics, machine learning, and deep learning, could revolutionize the use of medical imaging by enhancing individualized image-guided precision medicine approaches. In the present article, we will decipher how AI/radiomics could mine information from medical images, such as tumor volume, heterogeneity, and shape, to provide insights into cancer biology that can be leveraged by clinicians to improve patient care both in the clinic and in clinical trials. More specifically, we will detail the potential role of AI in enhancing detection/diagnosis, staging, treatment planning, treatment delivery, response assessment, treatment toxicity assessment, and monitoring of patients diagnosed with metastatic cutaneous melanoma. Finally, we will explore how these proof-of-concept results can be translated from bench to bedside by describing how the implementation of AI techniques can be standardized for routine adoption in clinical settings worldwide to predict outcomes with great accuracy, reproducibility, and generalizability in patients diagnosed with metastatic cutaneous melanoma.

6.
Diagnostics (Basel) ; 13(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835808

ABSTRACT

Immunotherapy has greatly improved the outcomes of patients with metastatic melanoma. However, it has also led to new patterns of response and progression, creating an unmet need for better biomarkers to identify patients likely to achieve a lasting clinical benefit or experience immune-related adverse events. In this study, we performed a focused literature survey covering the application of artificial intelligence (AI; in the form of radiomics, machine learning, and deep learning) to patients diagnosed with melanoma and treated with immunotherapy, reviewing 12 studies relevant to the topic published up to early 2022. The most commonly investigated imaging modality was CT imaging in isolation (n = 9, 75.0%), while patient cohorts were most frequently recruited retrospectively and from single institutions (n = 7, 58.3%). Most studies concerned the development of AI tools to assist in prognostication (n = 5, 41.7%) or the prediction of treatment response (n = 6, 50.0%). Validation methods were disparate, with two studies (16.7%) performing no validation and equal numbers using cross-validation (n = 3, 25%), a validation set (n = 3, 25%), or a test set (n = 3, 25%). Only one study used both validation and test sets (n = 1, 8.3%). Overall, promising results have been observed for the application of AI to immunotherapy-treated melanoma. Further improvement and eventual integration into clinical practice may be achieved through the implementation of rigorous validation using heterogeneous, prospective patient cohorts.

7.
Cancers (Basel) ; 15(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37760633

ABSTRACT

In this comprehensive review, we aimed to discuss the current state-of-the-art medical imaging for pheochromocytomas and paragangliomas (PPGLs) diagnosis and treatment. Despite major medical improvements, PPGLs, as with other neuroendocrine tumors (NETs), leave clinicians facing several challenges; their inherent particularities and their diagnosis and treatment pose several challenges for clinicians due to their inherent complexity, and they require management by multidisciplinary teams. The conventional concepts of medical imaging are currently undergoing a paradigm shift, thanks to developments in radiomic and metabolic imaging. However, despite active research, clinical relevance of these new parameters remains unclear, and further multicentric studies are needed in order to validate and increase widespread use and integration in clinical routine. Use of AI in PPGLs may detect changes in tumor phenotype that precede classical medical imaging biomarkers, such as shape, texture, and size. Since PPGLs are rare, slow-growing, and heterogeneous, multicentric collaboration will be necessary to have enough data in order to develop new PPGL biomarkers. In this nonsystematic review, our aim is to present an exhaustive pedagogical tool based on real-world cases, dedicated to physicians dealing with PPGLs, augmented by perspectives of artificial intelligence and big data.

8.
JCO Clin Cancer Inform ; 7: e2200203, 2023 09.
Article in English | MEDLINE | ID: mdl-37713655

ABSTRACT

PURPOSE: There are multiple approaches to modeling the relationship between longitudinal tumor measurements obtained from serial imaging and overall survival. Many require strong assumptions that are untestable and debatable. We illustrate how to apply a novel, more flexible approach, the partly conditional (PC) survival model, using images acquired during a phase III, randomized clinical trial in colorectal cancer as an example. METHODS: PC survival approaches were used to model longitudinal volumetric computed tomography data of 1,025 patients in the completed VELOUR trial, which evaluated adding aflibercept to infusional fluorouracil, leucovorin, and irinotecan for treating metastatic colorectal cancer. PC survival modeling is a semiparametric approach to estimating associations of longitudinal measurements with time-to-event outcomes. Overall survival was our outcome. Covariates included baseline tumor burden, change in tumor burden from baseline to each follow-up time, and treatment. Both unstratified and time-stratified models were investigated. RESULTS: Without making assumptions about the distribution of the tumor growth process, we characterized associations between the change in tumor burden and survival. This change was significantly associated with survival (hazard ratio [HR], 1.04; 95% CI, 1.02 to 1.05; P < .001), suggesting that aflibercept works at least in part by altering the tumor growth trajectory. We also found baseline tumor size prognostic for survival even when accounting for the change in tumor burden over time (HR, 1.02; 95% CI, 1.01 to 1.02; P < .001). CONCLUSION: The PC modeling approach offers flexible characterization of associations between longitudinal covariates, such as serially assessed tumor burden, and survival time. It can be applied to a variety of data of this nature and used as clinical trials are ongoing to incorporate new disease assessment information as it is accumulated, as indicated by an example from colorectal cancer.


Subject(s)
Colonic Neoplasms , Humans , Fluorouracil/therapeutic use , Irinotecan , Leucovorin/therapeutic use
9.
J Clin Med ; 12(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37568284

ABSTRACT

HER2 (Human Epidermal Growth Factor Receptor 2)-positive breast cancer is characterized by amplification of the HER2 gene and is associated with more aggressive tumor growth, increased risk of metastasis, and poorer prognosis when compared to other subtypes of breast cancer. HER2 expression is therefore a critical tumor feature that can be used to diagnose and treat breast cancer. Moving forward, advances in HER2 in vivo imaging, involving the use of techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), may allow for a greater role for HER2 status in guiding the management of breast cancer patients. This will apply both to patients who are HER2-positive and those who have limited-to-minimal immunohistochemical HER2 expression (HER2-low), with imaging ultimately helping clinicians determine the size and location of tumors. Additionally, PET and SPECT could help evaluate effectiveness of HER2-targeted therapies, such as trastuzumab or pertuzumab for HER2-positive cancers, and specially modified antibody drug conjugates (ADC), such as trastuzumab-deruxtecan, for HER2-low variants. This review will explore the current and future role of HER2 imaging in personalizing the care of patients diagnosed with breast cancer.

10.
Acad Radiol ; 30(11): 2712-2727, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37394411

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy is a revolutionary form of immunotherapy that has proven to be efficacious in the treatment of many hematologic cancers. CARs are modified T lymphocytes that express an artificial receptor specific to a tumor-associated antigen. These engineered cells are then reintroduced to upregulate the host immune responses and eradicate malignant cells. While the use of CAR T cell therapy is rapidly expanding, little is known about how common side effects such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) present radiographically. Here we provide a comprehensive review of how side effects present in different organ systems and how they can be optimally imaged. Early and accurate recognition of the radiographic presentation of these side effects is critical to the practicing radiologist and their patients so that these side effects can be promptly identified and treated.

11.
J Clin Med ; 12(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37445572

ABSTRACT

One out of eight women will be affected by breast cancer during her lifetime. Imaging plays a key role in breast cancer detection and management, providing physicians with information about tumor location, heterogeneity, and dissemination. In this review, we describe the latest advances in PET/CT imaging of breast cancer, including novel applications of 18F-FDG PET/CT and the development and testing of new agents for primary and metastatic breast tumor imaging and therapy. Ultimately, these radiopharmaceuticals may guide personalized approaches to optimize treatment based on the patient's specific tumor profile, and may become a new standard of care. In addition, they may enhance the assessment of treatment efficacy and lead to improved outcomes for patients with a breast cancer diagnosis.

12.
Eur Radiol ; 33(12): 9254-9261, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37368111

ABSTRACT

BACKGROUND: Several barriers hamper recruitment of diverse patient populations in multicenter clinical trials which determine efficacy of new systemic cancer therapies. PURPOSE: We assessed if quantitative analysis of computed tomography (CT) scans of metastatic colorectal cancer (mCRC) patients using imaging features that predict overall survival (OS) can unravel the association between ethnicity and efficacy. METHODS: We retrospectively analyzed CT images from 1584 mCRC patients in two phase III trials evaluating FOLFOX ± panitumumab (n = 331, 350) and FOLFIRI ± aflibercept (n = 437, 466) collected from August 2006 to March 2013. Primary and secondary endpoints compared RECIST1.1 response at month-2 and delta tumor volume at month-2, respectively. An ancillary study compared imaging phenotype using a peer-reviewed radiomics-signature combining 3 imaging features to predict OS landmarked from month-2. Analysis was stratified by ethnicity. RESULTS: In total, 1584 patients were included (mean age, 60.25 ± 10.57 years; 969 men). Ethnicity was as follows: African (n = 50, 3.2%), Asian (n = 66, 4.2%), Caucasian (n = 1413, 89.2%), Latino (n = 27, 1.7%), Other (n = 28, 1.8%). Overall baseline tumor volume demonstrated Africans and Caucasians had more advanced disease (p < 0.001). Ethnicity was associated with treatment response. Response per RECIST1.1 at month-2 was distinct between ethnicities (p = 0.048) with higher response rate (55.6%) in Latinos. Overall delta tumor volume at month-2 demonstrated that Latino patients more likely experienced response to treatment (p = 0.021). Radiomics phenotype was also distinct in terms of tumor radiomics heterogeneity (p = 0.023). CONCLUSION: This study highlights how clinical trials that inadequately represent minority groups may impact associated translational work. In appropriately powered studies, radiomics features may allow us to unravel associations between ethnicity and treatment efficacy, better elucidate mechanisms of resistance, and promote diversity in trials through predictive enrichment. CLINICAL RELEVANCE STATEMENT: Radiomics could promote clinical trial diversity through predictive enrichment, hence benefit to historically underrepresented racial/ethnic groups that may respond variably to treatment due to socioeconomic factors and built environment, collectively referred to as social determinants of health. KEY POINTS: •Findings indicate ethnicity was associated with treatment response across all 3 endpoints. First, response per RECIST1.1 at month-2 was distinct between ethnicities (p = 0.048) with higher response rate (55.6%) in Latinos. •Second, the overall delta tumor volume at month-2 demonstrated that Latino patients were more likely to experience response to treatment (p = 0.021). Radiomics phenotype was also distinct in terms of tumor radiomics heterogeneity (p = 0.023).


Subject(s)
Colonic Neoplasms , Tomography, X-Ray Computed , Aged , Humans , Male , Middle Aged , Ethnicity , Retrospective Studies , Tomography, X-Ray Computed/methods , Treatment Outcome
13.
Cancers (Basel) ; 15(10)2023 May 21.
Article in English | MEDLINE | ID: mdl-37345192

ABSTRACT

Treatment of non-small cell lung cancer (NSCLC) has undergone a paradigm shift. Once a disease with limited potential therapies, treatment options for patients have exploded with the availability of molecular testing to direct management and targeted therapies to treat tumors with specific driver mutations. New in vitro diagnostics allow for the early and non-invasive detection of disease, and emerging in vivo imaging techniques allow for better detection and monitoring. The development of checkpoint inhibitor immunotherapy has arguably been the biggest advance in lung cancer treatment, given that the vast majority of NSCLC tumors can be treated with these therapies. Specific targeted therapies, including those against KRAS, EGFR, RTK, and others have also improved the outcomes for those individuals bearing an actionable mutation. New and emerging therapies, such as bispecific antibodies, CAR T cell therapy, and molecular targeted radiotherapy, offer promise to patients for whom none of the existing therapies have proved effective. In this review, we provide the most up-to-date survey to our knowledge regarding emerging diagnostic and therapeutic strategies for lung cancer to provide clinicians with a comprehensive reference of the options for treatment available now and those which are soon to come.

14.
Diagnostics (Basel) ; 13(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36900136

ABSTRACT

Advanced melanoma is one of the deadliest cancers, owing to its invasiveness and its propensity to develop resistance to therapy. Surgery remains the first-line treatment for early-stage tumors but is often not an option for advanced-stage melanoma. Chemotherapy carries a poor prognosis, and despite advances in targeted therapy, the cancer can develop resistance. CAR T-cell therapy has demonstrated great success against hematological cancers, and clinical trials are deploying it against advanced melanoma. Though melanoma remains a challenging disease to treat, radiology will play an increasing role in monitoring both the CAR T-cells and response to therapy. We review the current imaging techniques for advanced melanoma, as well as novel PET tracers and radiomics, in order to guide CAR T-cell therapy and manage potential adverse events.

16.
J Thorac Oncol ; 18(5): 587-598, 2023 05.
Article in English | MEDLINE | ID: mdl-36646209

ABSTRACT

INTRODUCTION: We aimed to define a baseline radiomic signature associated with overall survival (OS) using baseline computed tomography (CT) images obtained from patients with NSCLC treated with nivolumab or chemotherapy. METHODS: The radiomic signature was developed in patients with NSCLC treated with nivolumab in CheckMate-017, -026, and -063. Nivolumab-treated patients were pooled and randomized to training, calibration, or validation sets using a 2:1:1 ratio. From baseline CT images, volume of tumor lesions was semiautomatically segmented, and 38 radiomic variables depicting tumor phenotype were extracted. Association between the radiomic signature and OS was assessed in the nivolumab-treated (validation set) and chemotherapy-treated (test set) patients in these studies. RESULTS: A baseline radiomic signature was identified using CT images obtained from 758 patients. The radiomic signature used a combination of imaging variables (spatial correlation, tumor volume in the liver, and tumor volume in the mediastinal lymph nodes) to output a continuous value, ranging from 0 to 1 (from most to least favorable estimated OS). Given a threshold of 0.55, the sensitivity and specificity of the radiomic signature for predicting 3-month OS were 86% and 77.8%, respectively. The signature was identified in the training set of patients treated with nivolumab and was significantly associated (p < 0.0001) with OS in patients treated with nivolumab or chemotherapy. CONCLUSIONS: The radiomic signature provides an early readout of the anticipated OS in patients with NSCLC treated with nivolumab or chemotherapy. This could provide important prognostic information and may support risk stratification in clinical trials.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Nivolumab/therapeutic use , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Prognosis , Tomography, X-Ray Computed/methods , Retrospective Studies
17.
Eur J Cancer ; 181: 166-178, 2023 03.
Article in English | MEDLINE | ID: mdl-36657325

ABSTRACT

Immunotherapies have significantly improved the survival of patients in many cancers over the last decade. However, primary and secondary resistances are encountered in most patients. Unravelling resistance mechanisms to cancer immunotherapies is an area of active investigation. Elevated levels of circulating enzyme lactate dehydrogenase (LDH) have been historically considered in oncology as a marker of bad prognosis, usually attributed to elevated tumour burden and cancer metabolism. Recent evidence suggests that elevated LDH levels could be independent from tumour burden and contain a negative predictive value, which could help in guiding treatment strategies in immuno-oncology. In this review, we decipher the rationale supporting the potential of LDH-targeted therapeutic strategies to tackle the direct immunosuppressive effects of LDH on a wide range of immune cells, and enhance the survival of patients treated with cancer immunotherapies.


Subject(s)
Immunotherapy , L-Lactate Dehydrogenase , Neoplasms , Humans , L-Lactate Dehydrogenase/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Prognosis
18.
J Clin Med ; 12(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675588

ABSTRACT

Breast cancer is the most common cancer in women around the world and the fifth leading cause of cancer-related death [...].

19.
Eur Radiol ; 33(4): 2821-2829, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36422645

ABSTRACT

OBJECTIVES: Initial pelvic lymph node (LN) staging is pivotal for treatment planification in patients with muscle-invasive bladder cancer (MIBC), but [18F]FDG PET/CT provides insufficient and variable diagnostic performance. We aimed to develop and validate a machine-learning-based combination of criteria on [18F]FDG PET/CT to accurately identify pelvic LN involvement in bladder cancer patients. METHODS: Consecutive patients with localized MIBC who performed preoperative [18F]FDG PET/CT between 2010 and 2017 were retrospectively assigned to training (n = 129) and validation (n = 44) sets. The reference standard was the pathological status after extended pelvic LN dissection. In the training set, a random forest algorithm identified the combination of criteria that best predicted LN status. The diagnostic performances (AUC) and interrater agreement of this combination of criteria were compared to a consensus of experts. RESULTS: The overall prevalence of pelvic LN involvement was 24% (n = 41/173). In the training set, the top 3 features were derived from pelvic LNs (SUVmax of the most intense LN, and product of diameters of the largest LN) and primary bladder tumor (product of diameters). In the validation set, diagnostic performance did not differ significantly between the combination of criteria (AUC = 0.59 95%CI [0.43-0.73]) and the consensus of experts (AUC = 0.64 95%CI [0.48-0.78], p = 0.54). The interrater agreement was equally good with Κ = 0.66 for both. CONCLUSION: The developed machine-learning-based combination of criteria performs as well as a consensus of experts to detect pelvic LN involvement on [18F]FDG PET/CT in patients with MIBC. KEY POINTS: • The developed machine-learning-based combination of criteria performs as well as experts to detect pelvic LN involvement on [18F]FDG PET/CT in patients with muscle-invasive bladder cancer. • The top 3 features to predict LN involvement were the SUVmax of the most intense LN, the product of diameters of the largest LN, and the product of diameters of the primary bladder tumor.


Subject(s)
Positron Emission Tomography Computed Tomography , Urinary Bladder Neoplasms , Humans , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Retrospective Studies , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Neoplasm Staging , Urinary Bladder Neoplasms/diagnosis , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology
20.
Radiology ; 306(1): 32-46, 2023 01.
Article in English | MEDLINE | ID: mdl-36472538

ABSTRACT

Criteria based on measurements of lesion diameter at CT have guided treatment with historical therapies due to the strong association between tumor size and survival. Clinical experience with immune checkpoint modulators shows that editing immune system function can be effective in various solid tumors. Equally, novel immune-related phenomena accompany this novel therapeutic paradigm. These effects of immunotherapy challenge the association of tumor size with response or progression and include risks and adverse events that present new demands for imaging to guide treatment decisions. Emerging and evolving approaches to immunotherapy highlight further key issues for imaging evaluation, such as dissociated response following local administration of immune checkpoint modulators, pseudoprogression due to immune infiltration in the tumor environment, and premature death due to hyperprogression. Research that may offer tools for radiologists to meet these challenges is reviewed. Different modalities are discussed, including immuno-PET, as well as new applications of CT, MRI, and fluorodeoxyglucose PET, such as radiomics and imaging of hematopoietic tissues or anthropometric characteristics. Multilevel integration of imaging and other biomarkers may improve clinical guidance for immunotherapies and provide theranostic opportunities.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Immunotherapy/methods , Positron-Emission Tomography , Immunologic Factors/therapeutic use , Disease Progression
SELECTION OF CITATIONS
SEARCH DETAIL
...